Effect of precursor structures on the electrochemical performance of Ni-rich LiNi0.88Co0.12O2 cathode materials

电化学 涂层 锂(药物) 材料科学 阴极 化学工程 氢氧化物 兴奋剂 无机化学 化学 纳米技术 电极 物理化学 冶金 工程类 医学 内分泌学 光电子学
作者
Gang Li,Lin Qi,Peng Xiao,Yongli Yu,Xu Chen,Wensheng Yang
出处
期刊:Electrochimica Acta [Elsevier]
卷期号:270: 319-329 被引量:30
标识
DOI:10.1016/j.electacta.2018.03.106
摘要

Abstract The structure design and synthesis of precursors is a key factor to improve the electrochemical properties of Ni-rich cathode materials. However, for the core-shell precursors, the structural evolution in the lithiated process and its effect on the structure and electrochemical properties of the final products has not been clearly elucidated. Herein, three LiNi0.88Co0.12O2 materials are synthesized from three different structured precursors, namely the completely coated 0.88Ni(OH)2@0.12Co(OH)2, the semi-coated & semi-doped 0.94Ni0.936Co0.064(OH)2@0.06Co(OH)2, and the completely doped Ni0.88Co0.12(OH)2, respectively. Unexpectedly, the core-shell structures of the completely coated and semi-coated & semi-doped precursors disappears, and the radial concentration distributions of Ni and Co are almost uniform in spherical LiNi0.88Co0.12O2 particles obtained by sintering with LiOH·H2O, no matter the precursor is coating type or doping type. Even so, the LiNi0.88Co0.12O2 material synthesized from the 0.88Ni(OH)2@0.12Co(OH)2 precursor still has the best electrochemical properties with the specific discharge capacity of 215 mAh g−1 at 0.1 C (20 mA g−1) and the capacity retention of 88.6% after 100 cycles. The reason is that the cobalt hydroxide coating layer on the surface of precursor acts as a barrier to decrease the diffusing rate of lithium ions into the core material, which leaves enough time to make Ni2+ be oxidized to Ni3+ as many as possible. This work not only synthesizes a high-performance LiNi0.88Co0.12O2 material, but also clearly reveals the reaction mechanism and provides valuable references for synthesizing high-performance LiNi1-x-yCoxMnyO2 (NCM) or LiNi0.8Co0.15Al0.05O2 (NCA) materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
伍齊发布了新的文献求助10
2秒前
香蕉觅云应助明亮的智宸采纳,获得10
3秒前
飞飞飞发布了新的文献求助10
3秒前
李健应助Mewo采纳,获得10
3秒前
舟渔发布了新的文献求助10
4秒前
4秒前
7秒前
9秒前
羡三岁应助hxl123采纳,获得10
11秒前
orixero应助陈迹采纳,获得10
12秒前
伍齊完成签到,获得积分20
12秒前
15秒前
深情安青应助平常的硬币采纳,获得10
16秒前
16秒前
大个应助聪明的小海豚采纳,获得10
17秒前
Ma完成签到,获得积分10
17秒前
飞飞飞完成签到,获得积分10
17秒前
winsgao发布了新的文献求助10
19秒前
南宫誉完成签到,获得积分10
19秒前
舟舟完成签到 ,获得积分10
20秒前
崽崽完成签到,获得积分10
20秒前
xiaomt0518发布了新的文献求助10
21秒前
22秒前
善学以致用应助风和日丽采纳,获得30
23秒前
冰墨发布了新的文献求助10
25秒前
所所应助xiao采纳,获得10
25秒前
_呱_应助动人的百褶裙采纳,获得10
25秒前
慕青应助冷艳中蓝采纳,获得10
26秒前
26秒前
Hello应助科研通管家采纳,获得10
27秒前
JamesPei应助科研通管家采纳,获得10
27秒前
27秒前
领导范儿应助科研通管家采纳,获得10
27秒前
星辰大海应助jinxingyue采纳,获得10
27秒前
jwj发布了新的文献求助10
27秒前
李爱国应助科研通管家采纳,获得30
27秒前
27秒前
丘比特应助科研通管家采纳,获得10
27秒前
星辰大海应助科研通管家采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309599
求助须知:如何正确求助?哪些是违规求助? 2942884
关于积分的说明 8511456
捐赠科研通 2617981
什么是DOI,文献DOI怎么找? 1430741
科研通“疑难数据库(出版商)”最低求助积分说明 664212
邀请新用户注册赠送积分活动 649424