Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

医学 淋巴结 H&E染色 接收机工作特性 放射科 乳腺癌 深度学习 算法 淋巴 癌症 试验装置 病理 人工智能 内科学 机器学习 染色 计算机科学
作者
Babak Ehteshami Bejnordi,Mitko Veta,Paul Johannes van Diest,Bram van Ginneken,Nico Karssemeijer,Geert Litjens,Jeroen van der Laak,Meyke Hermsen,Quirine F. Manson,Maschenka Balkenhol,Oscar Geessink,Nikolas Stathonikos,Marcory van Dijk,Peter Bult,Francisco Beça,Andrew H. Beck,D. Wang,Aditya Khosla,Rishab Gargeya,Humayun Irshad,Aoxiao Zhong,Qi Dou,Quanzheng Li,Hao Chen,Huangjing Lin,Pheng‐Ann Heng,Christian Haß,Elia Bruni,Q. K. Wong,Uğur Halıcı,Mustafa Ümit Öner,Rengül Cetin‐Atalay,Matt Berseth,Vitali Khvatkov,Alexei Vylegzhanin,Oren Kraus,Muhammad Shaban,Nasir Rajpoot,Ruqayya Awan,Korsuk Sirinukunwattana,Talha Qaiser,Yee‐Wah Tsang,David Tellez,Jonas Annuscheit,Peter Hufnagl,Mira Valkonen,Kimmo Kartasalo,Leena Latonen,Pekka Ruusuvuori,Kaisa Liimatainen,Hubertus Feußner,Bharti Mungal,Ami George,Stefanie Demirci,Nassir Navab,Satsuki Watanabe,Shigeto Seno,Yasuhiro Takenaka,Hideo Matsuda,Hady Ahmady Phoulady,Vassili Kovalev,Alexander Kalinovsky,Vitali Liauchuk,Gloria Bueno,M. Milagro Fernández-Carrobles,Ismael Serrano,Óscar Déniz,Daniel Racoceanu,Rui Venâncio
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2199-2199 被引量:2541
标识
DOI:10.1001/jama.2017.14585
摘要

Importance

Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.

Objective

Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists’ diagnoses in a diagnostic setting.

Design, Setting, and Participants

Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

Exposures

Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.

Main Outcomes and Measures

The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.

Results

The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).

Conclusions and Relevance

In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh2018687完成签到,获得积分10
5秒前
平常雨泽完成签到 ,获得积分10
18秒前
枫林摇曳完成签到 ,获得积分10
21秒前
22秒前
jyy应助科研通管家采纳,获得10
29秒前
jyy应助科研通管家采纳,获得10
29秒前
ding应助科研通管家采纳,获得10
29秒前
小幸运R完成签到 ,获得积分10
29秒前
电子屎壳郎完成签到,获得积分10
30秒前
ddd完成签到 ,获得积分10
30秒前
shuyu完成签到 ,获得积分10
32秒前
万能的小叮当完成签到,获得积分0
32秒前
居里姐姐完成签到 ,获得积分10
34秒前
居无何完成签到 ,获得积分10
35秒前
虚幻的夜天完成签到 ,获得积分10
35秒前
35秒前
运敬完成签到 ,获得积分10
44秒前
amy完成签到,获得积分0
45秒前
scitester完成签到,获得积分10
47秒前
虾米YYY应助hyn采纳,获得20
47秒前
花开四海完成签到 ,获得积分10
49秒前
小贾爱喝冰美式完成签到 ,获得积分10
54秒前
1分钟前
颜靖仇完成签到,获得积分10
1分钟前
热带蚂蚁完成签到 ,获得积分10
1分钟前
颜靖仇发布了新的文献求助10
1分钟前
文与武完成签到 ,获得积分10
1分钟前
龙腾岁月完成签到 ,获得积分10
1分钟前
1分钟前
小左完成签到 ,获得积分10
1分钟前
Yang完成签到 ,获得积分10
1分钟前
CHANG完成签到 ,获得积分10
1分钟前
俊逸沛菡完成签到 ,获得积分10
1分钟前
天天完成签到 ,获得积分10
1分钟前
蓝绝完成签到 ,获得积分10
1分钟前
fiu~完成签到 ,获得积分10
1分钟前
Lili发布了新的文献求助10
1分钟前
巫巫巫巫巫完成签到 ,获得积分10
1分钟前
hcjxj完成签到,获得积分10
1分钟前
haochi完成签到,获得积分10
1分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142849
求助须知:如何正确求助?哪些是违规求助? 2793732
关于积分的说明 7807174
捐赠科研通 2450021
什么是DOI,文献DOI怎么找? 1303576
科研通“疑难数据库(出版商)”最低求助积分说明 627016
版权声明 601350