Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

医学 淋巴结 H&E染色 接收机工作特性 放射科 乳腺癌 深度学习 算法 淋巴 癌症 试验装置 病理 人工智能 内科学 机器学习 染色 计算机科学
作者
Babak Ehteshami Bejnordi,Mitko Veta,Paul Johannes van Diest,Bram van Ginneken,Nico Karssemeijer,Geert Litjens,Jeroen van der Laak,Meyke Hermsen,Quirine F. Manson,Maschenka Balkenhol,Oscar Geessink,Nikolas Stathonikos,Marcory CRF van Dijk,Peter Bult,Francisco Beça,Andrew H. Beck,D. Wang,Aditya Khosla,Rishab Gargeya,Humayun Irshad
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2199-2199 被引量:2798
标识
DOI:10.1001/jama.2017.14585
摘要

Importance

Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.

Objective

Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting.

Design, Setting, and Participants

Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

Exposures

Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.

Main Outcomes and Measures

The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.

Results

The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).

Conclusions and Relevance

In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Jasper应助roc采纳,获得10
刚刚
孙朱珠完成签到,获得积分10
1秒前
1秒前
2秒前
2秒前
2秒前
3秒前
3秒前
魏寒冰完成签到 ,获得积分10
3秒前
迪迦奥特曼完成签到,获得积分10
4秒前
pharrah完成签到,获得积分10
4秒前
眼睛大的梦松完成签到 ,获得积分10
4秒前
林夕发布了新的文献求助30
4秒前
KIORking完成签到,获得积分10
4秒前
5秒前
希望天下0贩的0应助strome采纳,获得10
5秒前
静加油发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
阿飞完成签到,获得积分10
7秒前
幽默平安发布了新的文献求助10
7秒前
7秒前
iNk应助外向的飞雪采纳,获得20
7秒前
7秒前
李爱国应助Alnair采纳,获得10
7秒前
koial完成签到 ,获得积分10
8秒前
勾勾1991发布了新的文献求助10
8秒前
9秒前
猪猪hero发布了新的文献求助10
10秒前
樱桃猴子发布了新的文献求助10
10秒前
10秒前
xiaole完成签到 ,获得积分10
11秒前
唠叨的曼易完成签到,获得积分10
11秒前
7777777完成签到,获得积分10
11秒前
小余发布了新的文献求助10
11秒前
莫西莫西完成签到,获得积分10
12秒前
kinlin应助huyz采纳,获得10
12秒前
请叫我风吹麦浪应助mumu采纳,获得10
12秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016369
求助须知:如何正确求助?哪些是违规求助? 3556535
关于积分的说明 11321511
捐赠科研通 3289320
什么是DOI,文献DOI怎么找? 1812429
邀请新用户注册赠送积分活动 887952
科研通“疑难数据库(出版商)”最低求助积分说明 812060