亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer

医学 淋巴结 H&E染色 接收机工作特性 放射科 乳腺癌 深度学习 算法 淋巴 癌症 试验装置 病理 人工智能 内科学 机器学习 染色 计算机科学
作者
Babak Ehteshami Bejnordi,Mitko Veta,Paul Johannes van Diest,Bram van Ginneken,Nico Karssemeijer,Geert Litjens,Jeroen van der Laak,Meyke Hermsen,Quirine F. Manson,Maschenka Balkenhol,Oscar Geessink,Nikolas Stathonikos,Marcory CRF van Dijk,Peter Bult,Francisco Beça,Andrew H. Beck,D. Wang,Aditya Khosla,Rishab Gargeya,Humayun Irshad
出处
期刊:JAMA [American Medical Association]
卷期号:318 (22): 2199-2199 被引量:2901
标识
DOI:10.1001/jama.2017.14585
摘要

Importance

Application of deep learning algorithms to whole-slide pathology images can potentially improve diagnostic accuracy and efficiency.

Objective

Assess the performance of automated deep learning algorithms at detecting metastases in hematoxylin and eosin–stained tissue sections of lymph nodes of women with breast cancer and compare it with pathologists' diagnoses in a diagnostic setting.

Design, Setting, and Participants

Researcher challenge competition (CAMELYON16) to develop automated solutions for detecting lymph node metastases (November 2015-November 2016). A training data set of whole-slide images from 2 centers in the Netherlands with (n = 110) and without (n = 160) nodal metastases verified by immunohistochemical staining were provided to challenge participants to build algorithms. Algorithm performance was evaluated in an independent test set of 129 whole-slide images (49 with and 80 without metastases). The same test set of corresponding glass slides was also evaluated by a panel of 11 pathologists with time constraint (WTC) from the Netherlands to ascertain likelihood of nodal metastases for each slide in a flexible 2-hour session, simulating routine pathology workflow, and by 1 pathologist without time constraint (WOTC).

Exposures

Deep learning algorithms submitted as part of a challenge competition or pathologist interpretation.

Main Outcomes and Measures

The presence of specific metastatic foci and the absence vs presence of lymph node metastasis in a slide or image using receiver operating characteristic curve analysis. The 11 pathologists participating in the simulation exercise rated their diagnostic confidence as definitely normal, probably normal, equivocal, probably tumor, or definitely tumor.

Results

The area under the receiver operating characteristic curve (AUC) for the algorithms ranged from 0.556 to 0.994. The top-performing algorithm achieved a lesion-level, true-positive fraction comparable with that of the pathologist WOTC (72.4% [95% CI, 64.3%-80.4%]) at a mean of 0.0125 false-positives per normal whole-slide image. For the whole-slide image classification task, the best algorithm (AUC, 0.994 [95% CI, 0.983-0.999]) performed significantly better than the pathologists WTC in a diagnostic simulation (mean AUC, 0.810 [range, 0.738-0.884];P < .001). The top 5 algorithms had a mean AUC that was comparable with the pathologist interpreting the slides in the absence of time constraints (mean AUC, 0.960 [range, 0.923-0.994] for the top 5 algorithms vs 0.966 [95% CI, 0.927-0.998] for the pathologist WOTC).

Conclusions and Relevance

In the setting of a challenge competition, some deep learning algorithms achieved better diagnostic performance than a panel of 11 pathologists participating in a simulation exercise designed to mimic routine pathology workflow; algorithm performance was comparable with an expert pathologist interpreting whole-slide images without time constraints. Whether this approach has clinical utility will require evaluation in a clinical setting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奚瑞发布了新的文献求助10
4秒前
5秒前
机灵的衬衫完成签到 ,获得积分10
7秒前
Carl发布了新的文献求助10
7秒前
8秒前
科研通AI6应助Geass采纳,获得10
9秒前
小花生发布了新的文献求助10
12秒前
亦楚bank发布了新的文献求助30
13秒前
趴趴完成签到,获得积分10
14秒前
科研通AI6应助小胖采纳,获得10
14秒前
今后应助沉默的小天鹅采纳,获得10
15秒前
18秒前
月关完成签到 ,获得积分10
26秒前
SciGPT应助亦楚bank采纳,获得30
27秒前
范范发布了新的文献求助10
29秒前
Orange应助Carl采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
39秒前
无花果应助科研通管家采纳,获得10
39秒前
乐乐应助科研通管家采纳,获得10
39秒前
清脆的飞丹完成签到,获得积分10
52秒前
sn完成签到 ,获得积分10
52秒前
SiboN完成签到,获得积分10
57秒前
无花果应助lf采纳,获得10
59秒前
田様应助Winfred采纳,获得10
1分钟前
Geass发布了新的文献求助10
1分钟前
小路发布了新的文献求助10
1分钟前
默默从波关注了科研通微信公众号
1分钟前
1分钟前
一粟完成签到 ,获得积分10
1分钟前
1分钟前
lf发布了新的文献求助10
1分钟前
wang发布了新的文献求助10
1分钟前
超多肉肉肉肉完成签到 ,获得积分10
1分钟前
小路完成签到,获得积分10
1分钟前
1分钟前
完美世界应助wang采纳,获得10
1分钟前
默默从波发布了新的文献求助10
1分钟前
LPPQBB应助怕孤单的绝山采纳,获得80
1分钟前
1分钟前
温暖的沛凝完成签到 ,获得积分10
1分钟前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5334769
求助须知:如何正确求助?哪些是违规求助? 4472812
关于积分的说明 13920830
捐赠科研通 4366779
什么是DOI,文献DOI怎么找? 2399263
邀请新用户注册赠送积分活动 1392372
关于科研通互助平台的介绍 1363297