交叉熵法
启发式
交叉熵
数学优化
熵(时间箭头)
计算机科学
缩小
Kullback-Leibler散度
最优化问题
启发式
数学
人工智能
最大熵原理
二次分配问题
物理
量子力学
作者
Zdravko I. Botev,Dirk P. Kroese,Reuven Y. Rubinstein,Pierre L'Ecuyer
出处
期刊:Handbook of Statistics
日期:2013-12-31
卷期号:: 35-59
被引量:58
标识
DOI:10.1016/b978-0-444-53859-8.00003-5
摘要
The cross-entropy method is a versatile heuristic tool for solving difficult estimation and optimization problems, based on Kullback–Leibler (or cross-entropy) minimization. As an optimization method it unifies many existing population-based optimization heuristics. In this chapter we show how the cross-entropy method can be applied to a diverse range of combinatorial, continuous, and noisy optimization problems.
科研通智能强力驱动
Strongly Powered by AbleSci AI