Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis

刺激(心理学) 认知 解码方法 感知 多元统计 计算机科学 心理学 认知心理学 信息处理 神经影像学 人工智能 模式识别(心理学) 机器学习 神经科学 算法
作者
Sarah Alizadeh,Hamidreza Jamalabadi,Monika Schönauer,Christian Leibold,Steffen Gais
出处
期刊:NeuroImage [Elsevier]
卷期号:159: 449-458 被引量:15
标识
DOI:10.1016/j.neuroimage.2017.07.058
摘要

Multivariate pattern analysis (MVPA) methods are now widely used in life-science research. They have great potential but their complexity also bears unexpected pitfalls. In this paper, we explore the possibilities that arise from the high sensitivity of MVPA for stimulus-related differences, which may confound estimations of class differences during decoding of cognitive concepts. We propose a method that takes advantage of concept-unrelated grouping factors, uses blocked permutation tests, and gradually manipulates the proportion of concept-related information in data while the stimulus-related, concept-irrelevant factors are held constant. This results in a concept-response curve, which shows the relative contribution of these two components, i.e. how much of the decoding performance is specific to higher-order category processing and to lower order stimulus processing. It also allows separating stimulus-related from concept-related neuronal processing, which cannot be achieved experimentally. We applied our method to three different EEG data sets with different levels of stimulus-related confound to decode concepts of digits vs. letters, faces vs. houses, and animals vs. fruits based on event-related potentials at the single trial level. We show that exemplar-specific differences between stimuli can drive classification accuracy to above chance levels even in the absence of conceptual information. By looking into time-resolved windows of brain activity, concept-response curves can help characterize the time-course of lower-level and higher-level neural information processing and detect the corresponding temporal and spatial signatures of the corresponding cognitive processes. In particular, our results show that perceptual information is decoded earlier in time than conceptual information specific to processing digits and letters. In addition, compared to the stimulus-level predictive sites, concept-related topographies are spread more widely and, at later time points, reach the frontal cortex. Thus, our proposed method yields insights into cognitive processing as well as corresponding brain responses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小糊糊牙完成签到,获得积分10
刚刚
贝star完成签到,获得积分10
刚刚
zhangjianzeng完成签到 ,获得积分10
1秒前
yyy发布了新的文献求助10
1秒前
1秒前
这一天完成签到,获得积分10
2秒前
卡瓦丽咔完成签到,获得积分10
2秒前
小丽完成签到,获得积分10
3秒前
whuyyz完成签到,获得积分10
3秒前
吉以寒完成签到,获得积分10
3秒前
呆萌幼晴完成签到,获得积分10
3秒前
chen发布了新的文献求助10
3秒前
低级趣味完成签到,获得积分10
4秒前
木子木子粒完成签到 ,获得积分10
4秒前
waitstill完成签到,获得积分10
5秒前
Lee完成签到,获得积分20
6秒前
卡瓦丽咔发布了新的文献求助10
6秒前
量子星尘发布了新的文献求助10
6秒前
霍笑白完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
8秒前
爱学习的费力气完成签到 ,获得积分10
9秒前
斯文败类应助务实时光采纳,获得10
9秒前
zhangxin完成签到,获得积分10
10秒前
wsy完成签到 ,获得积分10
10秒前
leiztar完成签到,获得积分10
10秒前
阿白先生完成签到,获得积分10
11秒前
研友_方达完成签到,获得积分10
11秒前
上山石头完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
起点完成签到,获得积分10
12秒前
小薛完成签到,获得积分10
12秒前
猴哥好样的完成签到,获得积分10
12秒前
12秒前
14秒前
zz完成签到,获得积分10
14秒前
15秒前
安然无恙完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664885
求助须知:如何正确求助?哪些是违规求助? 4872325
关于积分的说明 15109450
捐赠科研通 4823740
什么是DOI,文献DOI怎么找? 2582524
邀请新用户注册赠送积分活动 1536489
关于科研通互助平台的介绍 1495074