Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis

刺激(心理学) 认知 解码方法 感知 多元统计 计算机科学 心理学 认知心理学 信息处理 神经影像学 人工智能 模式识别(心理学) 机器学习 神经科学 算法
作者
Sarah Alizadeh,Hamidreza Jamalabadi,Monika Schönauer,Christian Leibold,Steffen Gais
出处
期刊:NeuroImage [Elsevier]
卷期号:159: 449-458 被引量:15
标识
DOI:10.1016/j.neuroimage.2017.07.058
摘要

Multivariate pattern analysis (MVPA) methods are now widely used in life-science research. They have great potential but their complexity also bears unexpected pitfalls. In this paper, we explore the possibilities that arise from the high sensitivity of MVPA for stimulus-related differences, which may confound estimations of class differences during decoding of cognitive concepts. We propose a method that takes advantage of concept-unrelated grouping factors, uses blocked permutation tests, and gradually manipulates the proportion of concept-related information in data while the stimulus-related, concept-irrelevant factors are held constant. This results in a concept-response curve, which shows the relative contribution of these two components, i.e. how much of the decoding performance is specific to higher-order category processing and to lower order stimulus processing. It also allows separating stimulus-related from concept-related neuronal processing, which cannot be achieved experimentally. We applied our method to three different EEG data sets with different levels of stimulus-related confound to decode concepts of digits vs. letters, faces vs. houses, and animals vs. fruits based on event-related potentials at the single trial level. We show that exemplar-specific differences between stimuli can drive classification accuracy to above chance levels even in the absence of conceptual information. By looking into time-resolved windows of brain activity, concept-response curves can help characterize the time-course of lower-level and higher-level neural information processing and detect the corresponding temporal and spatial signatures of the corresponding cognitive processes. In particular, our results show that perceptual information is decoded earlier in time than conceptual information specific to processing digits and letters. In addition, compared to the stimulus-level predictive sites, concept-related topographies are spread more widely and, at later time points, reach the frontal cortex. Thus, our proposed method yields insights into cognitive processing as well as corresponding brain responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhizhzihzih完成签到,获得积分10
刚刚
刚刚
2568269431完成签到 ,获得积分10
1秒前
panzer发布了新的文献求助10
1秒前
1秒前
2秒前
smile发布了新的文献求助10
2秒前
3秒前
酷炫蚂蚁发布了新的文献求助10
3秒前
3秒前
Andy_Cheung完成签到,获得积分10
3秒前
feng完成签到,获得积分10
4秒前
maomao发布了新的文献求助10
4秒前
leena完成签到,获得积分10
4秒前
4秒前
青衣北风发布了新的文献求助10
5秒前
feng发布了新的文献求助10
5秒前
guygun发布了新的文献求助10
8秒前
小灰灰完成签到,获得积分10
9秒前
9秒前
海鸥海鸥发布了新的文献求助10
10秒前
青衣北风完成签到,获得积分10
10秒前
12秒前
MasterE完成签到,获得积分10
13秒前
我的小伙伴应助feng采纳,获得10
13秒前
善学以致用应助feng采纳,获得10
13秒前
14秒前
14秒前
gaoww发布了新的文献求助10
14秒前
小二发布了新的文献求助10
18秒前
solobang发布了新的文献求助10
19秒前
CodeCraft应助Jocelyn7采纳,获得10
19秒前
秋之月完成签到,获得积分10
19秒前
20秒前
cheche关注了科研通微信公众号
20秒前
21秒前
科研小民工应助kento采纳,获得50
22秒前
完美世界应助小萌采纳,获得10
23秒前
23秒前
gaoww完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824