Decoding cognitive concepts from neuroimaging data using multivariate pattern analysis

刺激(心理学) 认知 解码方法 感知 多元统计 计算机科学 心理学 认知心理学 信息处理 神经影像学 人工智能 模式识别(心理学) 机器学习 神经科学 算法
作者
Sarah Alizadeh,Hamidreza Jamalabadi,Monika Schönauer,Christian Leibold,Steffen Gais
出处
期刊:NeuroImage [Elsevier]
卷期号:159: 449-458 被引量:15
标识
DOI:10.1016/j.neuroimage.2017.07.058
摘要

Multivariate pattern analysis (MVPA) methods are now widely used in life-science research. They have great potential but their complexity also bears unexpected pitfalls. In this paper, we explore the possibilities that arise from the high sensitivity of MVPA for stimulus-related differences, which may confound estimations of class differences during decoding of cognitive concepts. We propose a method that takes advantage of concept-unrelated grouping factors, uses blocked permutation tests, and gradually manipulates the proportion of concept-related information in data while the stimulus-related, concept-irrelevant factors are held constant. This results in a concept-response curve, which shows the relative contribution of these two components, i.e. how much of the decoding performance is specific to higher-order category processing and to lower order stimulus processing. It also allows separating stimulus-related from concept-related neuronal processing, which cannot be achieved experimentally. We applied our method to three different EEG data sets with different levels of stimulus-related confound to decode concepts of digits vs. letters, faces vs. houses, and animals vs. fruits based on event-related potentials at the single trial level. We show that exemplar-specific differences between stimuli can drive classification accuracy to above chance levels even in the absence of conceptual information. By looking into time-resolved windows of brain activity, concept-response curves can help characterize the time-course of lower-level and higher-level neural information processing and detect the corresponding temporal and spatial signatures of the corresponding cognitive processes. In particular, our results show that perceptual information is decoded earlier in time than conceptual information specific to processing digits and letters. In addition, compared to the stimulus-level predictive sites, concept-related topographies are spread more widely and, at later time points, reach the frontal cortex. Thus, our proposed method yields insights into cognitive processing as well as corresponding brain responses.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
23我发布了新的文献求助10
1秒前
清浅时光完成签到,获得积分20
2秒前
FashionBoy应助75986686采纳,获得10
2秒前
J.发布了新的文献求助10
3秒前
3秒前
3秒前
3秒前
乐乐应助Darlin采纳,获得10
4秒前
Sky发布了新的文献求助10
4秒前
5秒前
6秒前
8秒前
8秒前
哈哈爱呀完成签到 ,获得积分10
9秒前
lll关注了科研通微信公众号
9秒前
依诺发布了新的文献求助10
9秒前
yyauthor发布了新的文献求助10
9秒前
研友_nV2pkn发布了新的文献求助10
10秒前
云瑾应助无辜的惜寒采纳,获得10
10秒前
ylky发布了新的文献求助20
10秒前
10秒前
11秒前
11秒前
caipengju发布了新的文献求助30
11秒前
桐桐应助细心的语蓉采纳,获得10
13秒前
啦啦啦发布了新的文献求助10
14秒前
15秒前
123456完成签到,获得积分10
17秒前
17秒前
18秒前
20秒前
朴实天寿应助小小莫采纳,获得20
21秒前
21秒前
烟花应助啦啦啦采纳,获得10
21秒前
柚子发布了新的文献求助10
21秒前
22秒前
共享精神应助白华苍松采纳,获得10
22秒前
奇奇发布了新的文献求助10
22秒前
winwing发布了新的文献求助30
22秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157298
求助须知:如何正确求助?哪些是违规求助? 2808647
关于积分的说明 7878088
捐赠科研通 2467070
什么是DOI,文献DOI怎么找? 1313183
科研通“疑难数据库(出版商)”最低求助积分说明 630369
版权声明 601919