Human wetness perception of fabrics under dynamic skin contact

感觉 材料科学 纹理(宇宙学) 感知 表面粗糙度 表面光洁度 复合材料 心理学 人工智能 计算机科学 神经科学 图像(数学)
作者
Margherita Raccuglia,Kolby Pistak,Christian Heyde,Jianguo Qu,Ningtao Mao,Simon Hodder,George Havenith
出处
期刊:Textile Research Journal [SAGE Publishing]
卷期号:88 (19): 2155-2168 被引量:45
标识
DOI:10.1177/0040517517716905
摘要

This experiment studied textile (surface texture, thickness) and non-textile (local skin temperature changes, stickiness sensation and fabric-to-skin pressure) parameters affecting skin wetness perception under dynamic interactions. Changes in fabric texture sensation between WET and DRY states and their effect on pleasantness were also studied. The surface texture of eight fabric samples, selected for their different structures, was determined from surface roughness measurements using the Kawabata Evaluation System. Sixteen participants assessed fabric wetness perception, at high pressure and low pressure conditions, stickiness, texture and pleasantness sensation on the ventral forearm. Differences in wetness perception (p < 0.05) were not determined by texture properties and/or texture sensation. Stickiness sensation and local skin temperature drop were determined as predictors of wetness perception (r 2 = 0.89), and although thickness did not correlate with wetness perception directly, when combined with stickiness sensation it provided a similar predictive power (r 2 = 0.86). Greater (p < 0.05) wetness perception responses at high pressure were observed compared with low pressure. Texture sensation affected pleasantness in DRY (r 2 = 0.89) and WET (r 2 = 0.93). In WET, pleasantness was significantly reduced (p < 0.05) compared to DRY, likely due to the concomitant increase in texture sensation (p < 0.05). In summary, under dynamic conditions, changes in stickiness sensation and wetness perception could not be attributed to fabric texture properties (i.e. surface roughness) measured by the Kawabata Evaluation System. In dynamic conditions thickness or skin temperature drop can predict fabric wetness perception only when including stickiness sensation data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
carbon发布了新的文献求助10
2秒前
武庸发布了新的文献求助10
2秒前
Jaoson_G发布了新的文献求助10
3秒前
孟斯扬完成签到,获得积分10
4秒前
5秒前
小鱼儿发布了新的文献求助10
5秒前
5秒前
赵佩奇发布了新的文献求助10
5秒前
顾矜应助阿凉采纳,获得10
8秒前
Jiangpeng完成签到,获得积分10
8秒前
活力初蝶完成签到,获得积分10
8秒前
李健应助zzhi采纳,获得10
10秒前
TJH完成签到,获得积分10
10秒前
柠檬完成签到 ,获得积分10
11秒前
华仔应助229536051213wee采纳,获得10
12秒前
12秒前
李小二完成签到,获得积分10
15秒前
15秒前
田心完成签到,获得积分10
16秒前
16秒前
抽象电台头完成签到,获得积分10
16秒前
yeah发布了新的文献求助10
18秒前
打打应助孤独的根号三采纳,获得10
18秒前
zzz完成签到,获得积分10
19秒前
ye1121发布了新的文献求助10
19秒前
称心的板栗完成签到,获得积分10
21秒前
苏晋强发布了新的文献求助10
21秒前
22秒前
彭于晏应助zz采纳,获得10
23秒前
懵懂的钢笔完成签到,获得积分10
23秒前
23秒前
斯文的邪欢关注了科研通微信公众号
24秒前
coin完成签到,获得积分10
24秒前
caimeng完成签到,获得积分10
24秒前
光亮的太阳完成签到,获得积分10
26秒前
coldbee完成签到,获得积分10
26秒前
purplelove完成签到 ,获得积分10
27秒前
YT发布了新的文献求助10
28秒前
科研通AI6应助高铅酸采纳,获得10
28秒前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Theory of Dislocations (3rd ed.) 500
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5227053
求助须知:如何正确求助?哪些是违规求助? 4398242
关于积分的说明 13688816
捐赠科研通 4262916
什么是DOI,文献DOI怎么找? 2339413
邀请新用户注册赠送积分活动 1336749
关于科研通互助平台的介绍 1292800