Strain-controlled electrocatalysis on multimetallic nanomaterials

电催化剂 纳米材料 应变工程 材料科学 拉伤 纳米材料基催化剂 纳米技术 纳米颗粒 化学 医学 电化学 电极 冶金 内科学 物理化学
作者
Mingchuan Luo,Shaojun Guo
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:2 (11) 被引量:892
标识
DOI:10.1038/natrevmats.2017.59
摘要

Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain–adsorption–reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field. Tuning the surface strain in multimetallic nanomaterials represents an effective strategy to improve their electrocatalytic properties. In this Review, using the oxygen reduction reaction as a model, the underlying relationship between surface strain and catalytic activity is discussed, along with the introduction, tuning and quantification of strain in nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
善良的新之完成签到,获得积分10
1秒前
Akim应助卡卡卡采纳,获得30
2秒前
2秒前
2秒前
5秒前
5秒前
汉堡包应助ss采纳,获得10
7秒前
xiaofeixia发布了新的文献求助10
7秒前
lalalalal发布了新的文献求助10
8秒前
8秒前
上官若男应助科研通管家采纳,获得10
8秒前
山月应助科研通管家采纳,获得10
8秒前
SciGPT应助科研通管家采纳,获得10
8秒前
8秒前
丘比特应助科研通管家采纳,获得10
8秒前
Orange应助科研通管家采纳,获得10
8秒前
小二郎应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
荼蘼如雪发布了新的文献求助10
9秒前
北风歌应助猪猪hero采纳,获得10
9秒前
Mr.Xu发布了新的文献求助10
9秒前
Guoshibo完成签到,获得积分10
9秒前
11秒前
12秒前
12秒前
小付老丝儿完成签到,获得积分20
13秒前
13秒前
ggg完成签到,获得积分10
14秒前
水草帽完成签到 ,获得积分10
14秒前
16秒前
17秒前
卡卡卡发布了新的文献求助30
17秒前
华仔应助OVERLXRD采纳,获得10
18秒前
田様应助fd163c采纳,获得10
19秒前
20秒前
1234发布了新的文献求助30
21秒前
大个应助都是采纳,获得30
23秒前
高分求助中
中央政治學校研究部新政治月刊社出版之《新政治》(第二卷第四期) 1000
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
【港理工学位论文】Telling the tale of health crisis response on social media : an exploration of narrative plot and commenters' co-narration 500
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3434062
求助须知:如何正确求助?哪些是违规求助? 3031257
关于积分的说明 8941535
捐赠科研通 2719231
什么是DOI,文献DOI怎么找? 1491703
科研通“疑难数据库(出版商)”最低求助积分说明 689418
邀请新用户注册赠送积分活动 685548