Strain-controlled electrocatalysis on multimetallic nanomaterials

电催化剂 纳米材料 应变工程 材料科学 拉伤 纳米材料基催化剂 纳米技术 纳米颗粒 化学 医学 电化学 电极 冶金 内科学 物理化学
作者
Mingchuan Luo,Shaojun Guo
出处
期刊:Nature Reviews Materials [Nature Portfolio]
卷期号:2 (11) 被引量:920
标识
DOI:10.1038/natrevmats.2017.59
摘要

Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain–adsorption–reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field. Tuning the surface strain in multimetallic nanomaterials represents an effective strategy to improve their electrocatalytic properties. In this Review, using the oxygen reduction reaction as a model, the underlying relationship between surface strain and catalytic activity is discussed, along with the introduction, tuning and quantification of strain in nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
蕾蕾发布了新的文献求助10
刚刚
1秒前
2秒前
FreeRay发布了新的文献求助10
2秒前
3秒前
3秒前
shine发布了新的文献求助10
4秒前
4秒前
Atlantis发布了新的文献求助10
4秒前
小马过河应助cq采纳,获得10
4秒前
默默成风完成签到,获得积分10
4秒前
wuludie应助林狗采纳,获得10
5秒前
Emotion发布了新的文献求助10
6秒前
xwc关闭了xwc文献求助
6秒前
同学好完成签到,获得积分10
6秒前
FFr大师完成签到,获得积分20
7秒前
英勇沧海发布了新的文献求助10
8秒前
火星上雨珍完成签到,获得积分10
9秒前
生命完成签到,获得积分20
10秒前
10秒前
10秒前
爆米花应助潇洒小松鼠采纳,获得10
10秒前
木木发布了新的文献求助10
10秒前
11秒前
shine完成签到,获得积分20
11秒前
11秒前
秘密完成签到 ,获得积分10
12秒前
13秒前
14秒前
wuludie应助林狗采纳,获得10
14秒前
Emotion完成签到,获得积分10
15秒前
zzp发布了新的文献求助10
16秒前
dadaba发布了新的文献求助10
16秒前
yang发布了新的文献求助10
16秒前
18秒前
Punch发布了新的文献求助10
18秒前
19秒前
20秒前
英勇沧海完成签到,获得积分20
20秒前
wang5945发布了新的文献求助10
21秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Evaluating the Cardiometabolic Efficacy and Safety of Lipoprotein Lipase Pathway Targets in Combination With Approved Lipid-Lowering Targets: A Drug Target Mendelian Randomization Study 500
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3733061
求助须知:如何正确求助?哪些是违规求助? 3277252
关于积分的说明 10001195
捐赠科研通 2992903
什么是DOI,文献DOI怎么找? 1642490
邀请新用户注册赠送积分活动 780441
科研通“疑难数据库(出版商)”最低求助积分说明 748844