Strain-controlled electrocatalysis on multimetallic nanomaterials

电催化剂 纳米材料 应变工程 材料科学 拉伤 纳米材料基催化剂 纳米晶 纳米技术 纳米颗粒 化学 医学 电化学 电极 光电子学 内科学 物理化学
作者
Mingchuan Luo,Shaojun Guo
出处
期刊:Nature Reviews Materials [Springer Nature]
卷期号:2 (11) 被引量:820
标识
DOI:10.1038/natrevmats.2017.59
摘要

Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain–adsorption–reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field. Tuning the surface strain in multimetallic nanomaterials represents an effective strategy to improve their electrocatalytic properties. In this Review, using the oxygen reduction reaction as a model, the underlying relationship between surface strain and catalytic activity is discussed, along with the introduction, tuning and quantification of strain in nanocatalysts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
背后的寇给背后的寇的求助进行了留言
刚刚
迷途的羔羊完成签到 ,获得积分10
1秒前
FTAo完成签到,获得积分10
1秒前
李思超完成签到 ,获得积分10
2秒前
慕青应助研友_ZegWmL采纳,获得10
4秒前
wp完成签到 ,获得积分10
5秒前
8秒前
王sir完成签到 ,获得积分10
9秒前
FTAo发布了新的文献求助10
10秒前
悠然小灏完成签到 ,获得积分10
10秒前
田様应助小黑点采纳,获得10
11秒前
W哇完成签到,获得积分10
11秒前
大成子完成签到,获得积分10
12秒前
桐桐应助烂漫的灵寒采纳,获得10
13秒前
虚幻采枫完成签到,获得积分10
15秒前
光芒万张完成签到 ,获得积分10
15秒前
qiang完成签到,获得积分10
16秒前
luxiang发布了新的文献求助10
16秒前
17秒前
None应助科研通管家采纳,获得10
18秒前
FashionBoy应助科研通管家采纳,获得10
18秒前
醉书生应助科研通管家采纳,获得10
18秒前
云瑾应助科研通管家采纳,获得10
18秒前
共享精神应助科研通管家采纳,获得10
18秒前
XuX应助科研通管家采纳,获得10
18秒前
熊猫应助科研通管家采纳,获得10
18秒前
今后应助科研通管家采纳,获得10
18秒前
iota应助科研通管家采纳,获得10
18秒前
深情安青应助科研通管家采纳,获得10
18秒前
hucchongzi应助科研通管家采纳,获得10
19秒前
hucchongzi应助科研通管家采纳,获得10
19秒前
云瑾应助科研通管家采纳,获得10
19秒前
benben055应助科研通管家采纳,获得20
19秒前
搜集达人应助科研通管家采纳,获得10
19秒前
hucchongzi应助科研通管家采纳,获得10
19秒前
脑洞疼应助Feifei133采纳,获得10
21秒前
大个应助Feifei133采纳,获得10
21秒前
852应助Feifei133采纳,获得10
21秒前
22秒前
22秒前
高分求助中
Impact of Mitophagy-Related Genes on the Diagnosis and Development of Esophageal Squamous Cell Carcinoma via Single-Cell RNA-seq Analysis and Machine Learning Algorithms 2000
How to Create Beauty: De Lairesse on the Theory and Practice of Making Art 1000
Gerard de Lairesse : an artist between stage and studio 670
大平正芳: 「戦後保守」とは何か 550
2019第三届中国LNG储运技术交流大会论文集 500
Contributo alla conoscenza del bifenile e dei suoi derivati. Nota XV. Passaggio dal sistema bifenilico a quello fluorenico 500
Multiscale Thermo-Hydro-Mechanics of Frozen Soil: Numerical Frameworks and Constitutive Models 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 2997864
求助须知:如何正确求助?哪些是违规求助? 2658531
关于积分的说明 7196689
捐赠科研通 2293971
什么是DOI,文献DOI怎么找? 1216369
科研通“疑难数据库(出版商)”最低求助积分说明 593516
版权声明 592888