A new double flexible job-shop scheduling problem integrating processing time, green production, and human factor indicators

渡线 调度(生产过程) 计算机科学 数学优化 作业车间调度 田口方法 工作车间 灵活性(工程) 工业工程 生产(经济) 流水车间调度 工程类 地铁列车时刻表 人工智能 机器学习 数学 经济 操作系统 统计 宏观经济学
作者
Guiliang Gong,Qianwang Deng,Xuran Gong,Wei Liu,Qinghua Ren
出处
期刊:Journal of Cleaner Production [Elsevier]
卷期号:174: 560-576 被引量:129
标识
DOI:10.1016/j.jclepro.2017.10.188
摘要

In this paper, we propose an original double flexible job-shop scheduling problem (DFJSP), in which both workers and machines are flexible. Because of the characteristics of double flexibility, DFJSP conforms to practical production better than the flexible job-shop scheduling problem (FJSP). In addition, a multi-objective optimization mathematic model according to the DFJSP is proposed, which is concerned with the processing time indicator that is usually optimized by most existing studies; green production indicators, namely, factors regarding environmental protection; and human factor indicators, which are actual indispensable elements that exist in the production system. Furthermore, ten benchmarks of DFJSP are presented and solved using a newly proposed hybrid genetic algorithm (NHGA). With the proposed NHGA, a new well-designed three-layer chromosome encoding method and some effective crossover and mutation operators are developed. To obtain the best combination of key parameters in NHGA, the Taguchi design of experiment method is used for their evaluation. Finally, comparisons between NHGA and NSGA-II show that the proposed NHGA has advantages in terms of the solving accuracy and efficiency of the DFJSP, particularly at a large scale. It would be beneficial to apply our proposed model to the multi-objective optimization of scheduling problems, especially those considering human factor and green production-related indicators.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liuchao发布了新的文献求助10
刚刚
逃之姚姚完成签到 ,获得积分10
刚刚
hy完成签到 ,获得积分20
1秒前
xhy发布了新的文献求助10
1秒前
新一完成签到,获得积分20
1秒前
碧阳的尔风完成签到,获得积分10
1秒前
桐桐应助ting采纳,获得10
1秒前
传奇3应助jagger采纳,获得30
2秒前
chen发布了新的文献求助10
2秒前
andyxrz完成签到,获得积分20
2秒前
清爽冬莲完成签到 ,获得积分10
2秒前
CodeCraft应助柠檬采纳,获得10
4秒前
库里晚安完成签到,获得积分10
4秒前
A1len完成签到 ,获得积分10
5秒前
星辰大海应助sokach采纳,获得10
6秒前
新一发布了新的文献求助30
6秒前
守夜人完成签到,获得积分10
6秒前
习习应助孔雀翎采纳,获得10
7秒前
liu完成签到,获得积分10
7秒前
田様应助玉衡璇玑采纳,获得10
8秒前
成就梦松发布了新的文献求助10
8秒前
123完成签到,获得积分10
8秒前
8秒前
8秒前
10秒前
Orange应助123采纳,获得10
10秒前
12秒前
仄言完成签到,获得积分10
12秒前
13秒前
儒雅的斑马完成签到,获得积分10
13秒前
汉堡包应助咕噜仔采纳,获得10
13秒前
FashionBoy应助momo采纳,获得10
13秒前
14秒前
14秒前
15秒前
第七兵团司令完成签到,获得积分10
16秒前
16秒前
qwq应助追梦采纳,获得10
16秒前
16秒前
17秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672