Stepped wedge designs: insights from a design of experiments perspective

计算机科学 透视图(图形) 楔形(几何) 实验设计 统计 人工智能 数学 几何学
作者
J. N. S. Matthews,Andrew Forbes
出处
期刊:Statistics in Medicine [Wiley]
卷期号:36 (24): 3772-3790 被引量:40
标识
DOI:10.1002/sim.7403
摘要

Stepped wedge designs (SWDs) have received considerable attention recently, as they are potentially a useful way to assess new treatments in areas such as health services implementation. Because allocation is usually by cluster, SWDs are often viewed as a form of cluster‐randomized trial. However, since the treatment within a cluster changes during the course of the study, they can also be viewed as a form of crossover design. This article explores SWDs from the perspective of crossover trials and designed experiments more generally. We show that the treatment effect estimator in a linear mixed effects model can be decomposed into a weighted mean of the estimators obtained from (1) regarding an SWD as a conventional row‐column design and (2) a so‐called vertical analysis, which is a row‐column design with row effects omitted. This provides a precise representation of “horizontal” and “vertical” comparisons, respectively, which to date have appeared without formal description in the literature. This decomposition displays a sometimes surprising way the analysis corrects for the partial confounding between time and treatment effects. The approach also permits the quantification of the loss of efficiency caused by mis‐specifying the correlation parameter in the mixed‐effects model. Optimal extensions of the vertical analysis are obtained, and these are shown to be highly inefficient for values of the within‐cluster dependence that are likely to be encountered in practice. Some recently described extensions to the classic SWD incorporating multiple treatments are also compared using the experimental design framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助紫愿采纳,获得10
1秒前
2秒前
tgd完成签到,获得积分10
3秒前
3秒前
5秒前
领导范儿应助csy采纳,获得10
5秒前
5秒前
6秒前
xiaoxiao完成签到,获得积分10
6秒前
SADHIASK完成签到,获得积分10
6秒前
热泪盈眶发布了新的文献求助10
8秒前
8秒前
柚子完成签到 ,获得积分10
8秒前
小耳朵完成签到,获得积分10
9秒前
研友_8Yo3dn完成签到,获得积分10
9秒前
哈哈爷发布了新的文献求助10
10秒前
大胆吐司发布了新的文献求助10
11秒前
WTX完成签到,获得积分0
11秒前
qmdx发布了新的文献求助30
13秒前
酷波er应助科大鲨鱼采纳,获得10
14秒前
14秒前
ygx完成签到,获得积分10
14秒前
紫愿发布了新的文献求助10
14秒前
Singularity应助小白一号采纳,获得10
14秒前
卷心菜完成签到,获得积分10
15秒前
15秒前
充电宝应助宋宋采纳,获得10
16秒前
17秒前
雨碎寒江发布了新的文献求助10
17秒前
17秒前
wood发布了新的文献求助10
18秒前
儒雅的笑卉完成签到,获得积分20
18秒前
18秒前
优雅小橘子完成签到 ,获得积分10
20秒前
21秒前
有动力噢完成签到,获得积分10
21秒前
csy发布了新的文献求助10
22秒前
ll完成签到,获得积分20
23秒前
666完成签到,获得积分10
25秒前
有动力噢发布了新的文献求助10
25秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3129285
求助须知:如何正确求助?哪些是违规求助? 2780109
关于积分的说明 7746184
捐赠科研通 2435286
什么是DOI,文献DOI怎么找? 1294008
科研通“疑难数据库(出版商)”最低求助积分说明 623498
版权声明 600542