POVM公司
协变变换
数学
操作员(生物学)
群(周期表)
秩(图论)
群论
对称群
对称(几何)
纯数学
域代数上的
量子
量子操作
量子力学
数学物理
物理
组合数学
开放量子系统
几何学
生物化学
化学
抑制因子
转录因子
基因
作者
Thomas Decker,Dominik Janzing,Martin Rötteler
摘要
We consider group-covariant positive operator valued measures (POVMs) on a finite dimensional quantum system. Following Neumark’s theorem a POVM can be implemented by an orthogonal measurement on a larger system. Accordingly, our goal is to find a quantum circuit implementation of a given group-covariant POVM which uses the symmetry of the POVM. Based on representation theory of the symmetry group we develop a general approach for the implementation of group-covariant POVMs which consist of rank-one operators. The construction relies on a method to decompose matrices that intertwine two representations of a finite group. We give several examples for which the resulting quantum circuits are efficient. In particular, we obtain efficient quantum circuits for a class of POVMs generated by Weyl–Heisenberg groups. These circuits allow to implement an approximative simultaneous measurement of the position and crystal momentum of a particle moving on a cyclic chain.
科研通智能强力驱动
Strongly Powered by AbleSci AI