Artificial neural network prediction of mechanical properties of hot rolled low carbon steel strip

人工神经网络 极限抗拉强度 近似误差 生产线 反向传播 碳钢 灵敏度(控制系统) 材料科学 边距(机器学习) 工艺工程 结构工程 复合材料 机械工程 计算机科学 工程类 算法 人工智能 机器学习 腐蚀 电子工程
作者
Niu,Jianqing,Li,Hua-long
出处
期刊:中国工程科学:英文版 卷期号:11 (6): 8-12 被引量:1
摘要

Conventionally,direct tensile tests are employed to measure mechanical properties of industrially produced products. In mass production,the cost of sampling and labor is high,which leads to an increase of total production cost and a decrease of production efficiency. The main purpose of this paper is to develop an intelligent program based on artificial neural network(ANN) to predict the mechanical properties of a commercial grade hot rolled low carbon steel strip,SPHC. A neural network model was developed by using 7×5×1 back-propagation(BP)neural network structure to determine the multiple relationships among chemical composition,product process and mechanical properties. Industrial on-line application of the model indicated that prediction results were in good agreement with measured values. It showed that 99.2 % of the products’ tensile strength was accurately predicted within an error margin of ±10 %,compared to measured values. Based on the model,the effects of chemical composition and hot rolling process on mechanical properties were derived and the relative importance of each input parameter was evaluated by sensitivity analysis. All the results demonstrate that the developed ANN models are capable of accurate predictions under real-time industrial conditions. The developed model can be used to substitute mechanical property measurement and therefore reduce cost of production. It can also be used to control and optimize mechanical properties of the investigated steel.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
学术大白完成签到 ,获得积分10
3秒前
3秒前
SYT完成签到,获得积分10
4秒前
5秒前
7秒前
7秒前
7秒前
8秒前
8秒前
魏伯安发布了新的文献求助10
8秒前
8秒前
zhouleiwang完成签到,获得积分10
9秒前
李爱国应助aiming采纳,获得10
10秒前
无奈傲菡完成签到,获得积分10
11秒前
TT发布了新的文献求助10
11秒前
啦啦啦发布了新的文献求助10
12秒前
sun发布了新的文献求助10
13秒前
荣荣完成签到,获得积分10
13秒前
14秒前
小安完成签到,获得积分10
15秒前
Spencer完成签到 ,获得积分10
15秒前
PengHu完成签到,获得积分10
16秒前
16秒前
18秒前
20秒前
20秒前
20秒前
ywang发布了新的文献求助10
21秒前
失眠虔纹完成签到,获得积分10
21秒前
斯文败类应助nextconnie采纳,获得10
21秒前
药学牛马发布了新的文献求助10
25秒前
25秒前
26秒前
29秒前
张无缺完成签到,获得积分10
32秒前
34秒前
CodeCraft应助MES采纳,获得10
35秒前
笨笨乘风完成签到,获得积分10
36秒前
田様应助axunQAQ采纳,获得10
38秒前
完美秋烟发布了新的文献求助10
38秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849