Adaptive real-time optimal energy management strategy based on equivalent factors optimization for plug-in hybrid electric vehicle

行驶循环 能源管理 插件 粒子群优化 动力传动系统 汽车工程 电动汽车 工程类 能量(信号处理) 燃料效率 控制(管理) 数学优化 控制工程 计算机科学 控制理论(社会学) 功率(物理) 算法 物理 数学 量子力学 统计 程序设计语言 人工智能 扭矩 热力学
作者
Chao Yang,Siyu Du,Lipeng Zhang,Sixong You,Yiyong Yang,Yue Zhao
出处
期刊:Applied Energy [Elsevier BV]
卷期号:203: 883-896 被引量:135
标识
DOI:10.1016/j.apenergy.2017.06.106
摘要

Plug-in hybrid electric vehicle (PHEV) is one of the most promising products to solve the problem about air pollution and energy crisis. Considering the characteristics of urban bus route, maybe a fixed-control-parameter control strategy for PHEV cannot perfectly match the complicated variation of driving conditions, and as a result the ideal vehicle fuel economy would not be obtained. Therefore, it is of great significance to develop an adaptive real-time optimal energy management strategy for PHEV by taking the segment characteristics of driving cycles into consideration. In this study, a novel energy management strategy for Plug-in hybrid electric bus (PHEB) is proposed, which optimizes the equivalent factor (EF) of each segment in the driving cycle. The proposed strategy includes an offline part and an online part. In the offline part, the driving cycles are divided into segments according to the actual positions of bus stops, the EF of each segment is optimized by linear weight particle swarm optimization algorithm with different initial states of charge (SOC). The optimization results of EF are then converted into a 2-dimensional look up table, which can be used to make real-time adjustments to online control strategy. In the online part, the optimal instantaneous energy distribution is obtained in this hybrid powertrain. Finally, the proposed strategy is verified with simulation and hardware in the loop tests, and three kinds of commonly used control strategies are adopted for comparison. Results show when the initial SOC is 90%, the fuel economy with the proposed strategy can be improved by 15.93% compared with that of baseline strategy, and when the initial SOC is 60%, this value is 16.02%. The proposed strategy may provide theoretical support for control optimization of PHEV.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaoz完成签到,获得积分10
1秒前
QiQi发布了新的文献求助10
1秒前
世纪飞虎完成签到,获得积分20
2秒前
3秒前
Zhen Wang完成签到,获得积分20
6秒前
8秒前
9秒前
XU发布了新的文献求助10
9秒前
9秒前
潇湘雪月完成签到,获得积分10
12秒前
兴奋平松完成签到 ,获得积分10
12秒前
UP发布了新的文献求助10
13秒前
唐亿倩完成签到,获得积分10
14秒前
14秒前
星辰大海应助Aippan采纳,获得10
14秒前
自然的雪晴完成签到 ,获得积分10
14秒前
14秒前
15秒前
小二郎应助znlion采纳,获得10
16秒前
白色的猫猫完成签到,获得积分10
17秒前
ED应助WYB采纳,获得10
17秒前
17秒前
俊秀的念烟完成签到,获得积分10
18秒前
chen应助mqq采纳,获得10
18秒前
19秒前
LL爱读书发布了新的文献求助10
20秒前
YaoHui发布了新的文献求助10
20秒前
蒲云海发布了新的文献求助10
20秒前
迅速又菡发布了新的文献求助10
22秒前
紫薯球完成签到,获得积分10
22秒前
无心的平蝶完成签到,获得积分10
23秒前
23秒前
24秒前
menghongmei发布了新的文献求助10
25秒前
26秒前
端庄千青发布了新的文献求助10
26秒前
27秒前
踏实以丹完成签到,获得积分10
27秒前
ZIJUNZHAO完成签到 ,获得积分10
28秒前
29秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951021
求助须知:如何正确求助?哪些是违规求助? 3496420
关于积分的说明 11081962
捐赠科研通 3226913
什么是DOI,文献DOI怎么找? 1784010
邀请新用户注册赠送积分活动 868130
科研通“疑难数据库(出版商)”最低求助积分说明 801003