The perils of standardizing infant weight to assess weight change differences across exposure groups

百分位 医学 人体测量学 背景(考古学) 标准分 统计 人口学 范畴变量 重量变化 标准误差 减肥 数学 肥胖 内科学 社会学 生物 古生物学
作者
Ann Von Holle,Kari E. North,Ran Tao,Sheila Gahagan
出处
期刊:Annals of Epidemiology [Elsevier]
卷期号:28 (8): 515-520 被引量:4
标识
DOI:10.1016/j.annepidem.2018.04.006
摘要

When conducting analyses of child weight growth trajectories, researchers commonly use Z-scores from a standard instead of the observed weights. However, these Z-scores, calculated from cross-sectional data, may introduce methodological limitations when used in the context of longitudinal analyses. We assessed analytic limitations when analyzing infant growth data with three anthropometric measures: weight and the corresponding Z-scores and percentiles from a standard.We undertook a series of Monte Carlo simulations and compared tests of differences in postnatal weight change across time (growth velocity) between two exposure groups. Models with the observed weight outcome were compared to the corresponding weight World Health Organization (WHO) Z-score or weight percentile outcomes. We calculated power, type I error, and median product term coefficient estimates to assess differences between the models.There was lower power to detect velocity differences across exposure groups for WHO Z-scores and percentiles as outcomes compared to the use of observed weight values. We also noted instances in which velocity differences between exposed and unexposed groups were in the opposite direction in analyses with WHO Z-score outcomes.In our simulations of infant weight velocity differences across exposure groups, we observed lower power and effect inconsistencies when applying a standard-derived Z-score transformation. These results emphasize the need for careful consideration of the appropriate scale when assessing infant growth trajectories across categorical groups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Cooper发布了新的文献求助10
刚刚
莉诺亚发布了新的文献求助10
2秒前
3秒前
娇娇完成签到,获得积分10
3秒前
lq发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
嗯哼应助jixin采纳,获得20
5秒前
凌云完成签到,获得积分10
5秒前
汉堡包应助迷途的羔羊采纳,获得10
6秒前
碧蓝大炮完成签到,获得积分20
7秒前
7秒前
顾城浪子完成签到,获得积分10
8秒前
8秒前
科研通AI2S应助淋湿巴黎采纳,获得10
8秒前
颜鑫完成签到 ,获得积分10
8秒前
suo发布了新的文献求助10
9秒前
雨相所至完成签到,获得积分10
9秒前
碧蓝大炮发布了新的文献求助10
10秒前
科研通AI2S应助搞怪彩虹采纳,获得10
10秒前
11秒前
天天快乐应助满果妈妈采纳,获得30
11秒前
11秒前
科研通AI2S应助沉默的真相采纳,获得10
11秒前
爆米花应助乔心采纳,获得10
12秒前
12秒前
酷波er应助迷人人雄采纳,获得10
14秒前
chenpeio发布了新的文献求助10
15秒前
嗒刻发布了新的文献求助10
15秒前
宜醉宜游宜睡应助切克闹采纳,获得10
15秒前
wuzhi完成签到,获得积分10
16秒前
dada完成签到 ,获得积分10
16秒前
科研通AI2S应助Delia采纳,获得10
16秒前
打打应助lq采纳,获得10
17秒前
遥远的尧应助木槿采纳,获得10
17秒前
17秒前
18秒前
18秒前
Gauss应助科研通管家采纳,获得30
18秒前
高分求助中
Evolution 10000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3157519
求助须知:如何正确求助?哪些是违规求助? 2808909
关于积分的说明 7879293
捐赠科研通 2467387
什么是DOI,文献DOI怎么找? 1313431
科研通“疑难数据库(出版商)”最低求助积分说明 630398
版权声明 601919