An IRT Analysis of the Growth Mindset Scale

心态 比例(比率) 项目反应理论 心理学 样品(材料) 人气 克朗巴赫阿尔法 社会心理学 心理测量学 临床心理学 计算机科学 地理 人工智能 地图学 化学 色谱法
作者
Brooke Midkiff,Michelle M. Langer,Cynthia Demetriou,A. T. Panter
出处
期刊:Springer proceedings in mathematics & statistics 卷期号:: 163-174 被引量:19
标识
DOI:10.1007/978-3-319-77249-3_14
摘要

Growth mindset has gained popularity in the fields of psychology and education, yet there is surprisingly little research on the psychometric properties of the Growth Mindset Scale. This research presents an item response theory analysis of the Growth Mindset Scale when used among college students in the United States. Growth Mindset is the belief that success comes through hard work and effort rather than fixed intelligence. Having a growth mindset is believed to be important for academic success among historically marginalized groups; therefore it is important to know if the Growth Mindset Scale functions well among first generation college students. The sample consists of 1260 individuals who completed the Growth Mindset Scale on one of 5 surveys. The Growth Mindset Scale consists of 8 items, with responses ranging from strongly disagree (1) to strongly agree (5). IRT analysis is used to assess item fit, scale dimensionality, local dependence, and differential item functioning (DIF). Due to local dependence within the 8-item scale, the final IRT model fit 4 items to a unidimensional model. The 4-item scale did not exhibit any local dependence or DIF among known groups within the sample. The 4-item scale also had high marginal reliability (0.90) and high total information. Cronbach’s alpha for the 4-item scale was α = 0.89. Discussion of the local dependence issues within the 8-item scale is provided.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助chengzi采纳,获得10
刚刚
刚刚
可爱的函函应助chinjaneking采纳,获得10
1秒前
cjjwei完成签到 ,获得积分10
1秒前
andy发布了新的文献求助10
1秒前
BlingBling发布了新的文献求助50
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
long完成签到,获得积分10
2秒前
3秒前
3秒前
完美世界应助黄经亮采纳,获得10
3秒前
sty完成签到,获得积分10
4秒前
ZW完成签到,获得积分10
4秒前
zzz发布了新的文献求助10
4秒前
CipherSage应助casperzwj采纳,获得10
5秒前
5秒前
慕青应助Blanca采纳,获得10
5秒前
bkagyin应助linn采纳,获得10
5秒前
小安完成签到,获得积分10
5秒前
杨鹏发布了新的文献求助10
6秒前
7秒前
航航Hanghang完成签到,获得积分10
7秒前
7秒前
keyanfeiwu发布了新的文献求助10
7秒前
爱啥啥发布了新的文献求助50
8秒前
8秒前
静爸发布了新的文献求助10
8秒前
NexusExplorer应助captain龙采纳,获得10
9秒前
左劲涵完成签到,获得积分10
9秒前
9秒前
乐乐应助zzz采纳,获得10
10秒前
彭于晏应助妄自采纳,获得10
10秒前
wanci应助hhhhh1采纳,获得10
10秒前
CipherSage应助猪猪hero采纳,获得10
10秒前
调皮翅膀完成签到 ,获得积分10
10秒前
0109发布了新的文献求助10
11秒前
无极微光应助俊俏的紫菜采纳,获得20
11秒前
13秒前
情怀应助明理的帆布鞋采纳,获得10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5465399
求助须知:如何正确求助?哪些是违规求助? 4569719
关于积分的说明 14320701
捐赠科研通 4496152
什么是DOI,文献DOI怎么找? 2463156
邀请新用户注册赠送积分活动 1452110
关于科研通互助平台的介绍 1427270