荧光粉
色度
光致发光
材料科学
色温
荧光
激发态
分析化学(期刊)
光电子学
发光
发射光谱
光学
谱线
化学
原子物理学
物理
天文
色谱法
作者
G. Seeta Rama Raju,E. Pavitra,Gattupalli Manikya Rao,Tae‐Joon Jeon,Sie‐Wook Jeon,Yun Suk Huh,Young‐Kyu Han
标识
DOI:10.1016/j.jallcom.2018.04.256
摘要
Fluorescence intensity ratio (FIR)-based optical thermometry has attracted a great deal of attention because it allows accurate and reliable temperature measurements with high spatial resolution and real-time monitoring. Herein, we report the novel Sr2Gd8(SiO4)6O2:Er3+ (SGSO:Er3+) phosphor as an optical thermometry material. The sol-gel method is used to synthesize the oxyapatite structured SGSO:Er3+ phosphors, which exhibits a rod-like morphology. The photoluminescence spectra of SGSO:Er3+ phosphors displays two distinct green emission bands corresponding to the electronic transitions 2H11/2 → 4I15/2 and 4S3/2 → 4I15/2. The temperature-induced variations in the FIR result in a maximum sensitivity of 3.4 × 10−3 K−1 at 463 K. Further, the CIE chromaticity coordinates do not shift from the green region when the temperature is increased from 303 to 483 K and the color purity only decreasing from 77.6 to 71.4%. The SGSO:2Er3+ phosphor exhibits the color-purity of 93.5% when excited with low-energy electron beam. These results suggest that the SGSO:2Er3+ phosphor is a promising material for optical temperature sensors and display devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI