过氧化氢
活性氧
氧化应激
化学
生物相容性
炎症
姜黄素
组合化学
生物化学
有机化学
免疫学
医学
作者
Qixiong Zhang,Fuzhong Zhang,Yue Chen,Yin Dou,Hui Tao,Dinglin Zhang,Ruibing Wang,Xiaohui Li,Jianxiang Zhang
标识
DOI:10.1021/acs.chemmater.7b02412
摘要
To develop reactive oxygen species (ROS)-responsive anti-inflammatory materials and establish their structure–property correlations, a series of H2O2-eliminating materials (OxbCDs) were designed and synthesized by conjugating different phenylboronic acid pinacol ester (PBAP) groups onto a biocompatible scaffold compound β-cyclodextrin via varied linker groups. Both the H2O2-triggered hydrolysis profiles and H2O2-eliminating capacities of these materials were dependent on the chemical structure of the PBAP moieties. Together with the elucidation of hydrolysis mechanisms, we established structure–property correlations of these OxbCD materials. Extensive in vitro experiments revealed nanoparticles (NPs) based on OxbCDs showed no adverse biological effects on normal cells. OxbCD NPs could effectively inhibit inflammatory responses and oxidative stress in stimulated macrophages. Consistently, OxbCD NPs efficaciously alleviated the symptoms of peritonitis in mice, with respect to reducing the counts of neutrophils and macrophages as well as inhibiting the secretion of pro-inflammatory cytokines, chemokines, and oxidative mediators. Similarly, OxbCD NPs loaded with anti-inflammatory drugs displayed superior efficacy in an acute inflammation model of peritonitis in mice. More importantly, OxbCD NPs showed good biocompatibility after administration via different routes. Consequently, besides serving as anti-inflammatory materials, the newly developed H2O2-eliminating materials may be utilized as pharmacologically functional carriers for targeted therapy of many diseases associated with inflammation and oxidative stress.
科研通智能强力驱动
Strongly Powered by AbleSci AI