Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction

代谢组学 尿 痴呆 医学 糖尿病 代谢组 生物信息学 内科学 疾病 内分泌学 生物
作者
Lili Song,Pengwei Zhuang,Mengya Lin,Mingqin Kang,Hongyue Liu,Yuping Zhang,Zhen Yang,Yunlong Chen,Yanjun Zhang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:16 (9): 3180-3189 被引量:41
标识
DOI:10.1021/acs.jproteome.7b00168
摘要

Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography-quadrupole time-of-flight-mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌人归完成签到 ,获得积分10
1秒前
专注雨珍完成签到,获得积分10
1秒前
wy.he应助结实大雁采纳,获得10
2秒前
2秒前
科研通AI6.1应助鲜艳的遥采纳,获得10
2秒前
彭新铭完成签到,获得积分10
2秒前
Charles_Rowan发布了新的文献求助10
2秒前
科目三应助阿皓要发nature采纳,获得10
2秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
草莓熊发布了新的文献求助10
3秒前
无花果应助wmzskye采纳,获得10
3秒前
SciGPT应助MOMO采纳,获得10
3秒前
Xin完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
Hello应助zzt采纳,获得10
5秒前
Herisland发布了新的文献求助10
5秒前
su发布了新的文献求助10
5秒前
科研通AI6.1应助richael采纳,获得10
5秒前
5秒前
6秒前
xzy998应助感动城采纳,获得10
6秒前
esbd发布了新的文献求助10
8秒前
8秒前
Ceaser完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
9秒前
简单喀秋莎完成签到,获得积分10
9秒前
9秒前
9秒前
9秒前
9秒前
volcanoes完成签到,获得积分10
9秒前
594发布了新的文献求助10
9秒前
猪猪hero发布了新的文献求助10
9秒前
Ruby发布了新的文献求助30
10秒前
10秒前
夏天完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
从k到英国情人 1700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5776395
求助须知:如何正确求助?哪些是违规求助? 5629084
关于积分的说明 15442414
捐赠科研通 4908542
什么是DOI,文献DOI怎么找? 2641276
邀请新用户注册赠送积分活动 1589232
关于科研通互助平台的介绍 1543882