Urine Metabonomics Reveals Early Biomarkers in Diabetic Cognitive Dysfunction

代谢组学 尿 痴呆 医学 糖尿病 代谢组 生物信息学 内科学 疾病 内分泌学 生物
作者
Lili Song,Pengwei Zhuang,Mengya Lin,Mingqin Kang,Hongyue Liu,Yuping Zhang,Zhen Yang,Yunlong Chen,Yanjun Zhang
出处
期刊:Journal of Proteome Research [American Chemical Society]
卷期号:16 (9): 3180-3189 被引量:37
标识
DOI:10.1021/acs.jproteome.7b00168
摘要

Recently, increasing attention has been paid to diabetic encephalopathy, which is a frequent diabetic complication and affects nearly 30% of diabetics. Because cognitive dysfunction from diabetic encephalopathy might develop into irreversible dementia, early diagnosis and detection of this disease is of great significance for its prevention and treatment. This study is to investigate the early specific metabolites biomarkers in urine prior to the onset of diabetic cognitive dysfunction (DCD) by using metabolomics technology. An ultra-high performance liquid-chromatography–quadrupole time-of-flight–mass spectrometry (UPLC-Q/TOF-MS) platform was used to analyze the urine samples from diabetic mice that were associated with mild cognitive impairment (MCI) and nonassociated with MCI in the stage of diabetes (prior to the onset of DCD). We then screened and validated the early biomarkers using OPLS-DA model and support vector machine (SVM) method. Following multivariate statistical and integration analysis, we found that seven metabolites could be accepted as early biomarkers of DCD, and the SVM results showed that the prediction accuracy is as high as 91.66%. The identities of four biomarkers were determined by mass spectrometry. The identified biomarkers were largely involved in nicotinate and nicotinamide metabolism, glutathione metabolism, tryptophan metabolism, and sphingolipid metabolism. The present study first revealed reliable biomarkers for early diagnosis of DCD. It provides new insight and strategy for the early diagnosis and treatment of DCD.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
skysleeper完成签到,获得积分10
1秒前
耍酷的梦桃完成签到,获得积分10
2秒前
龙在天涯完成签到,获得积分10
2秒前
4秒前
成就绮琴完成签到 ,获得积分10
5秒前
12366666完成签到,获得积分10
5秒前
阿弹完成签到,获得积分10
5秒前
shining完成签到,获得积分10
6秒前
过儿完成签到 ,获得积分10
6秒前
Silence完成签到,获得积分0
7秒前
livra1058完成签到,获得积分10
7秒前
简单的易云完成签到,获得积分10
8秒前
无味完成签到,获得积分10
10秒前
qiqi完成签到,获得积分10
11秒前
gnosis发布了新的文献求助30
12秒前
lllllllll完成签到,获得积分10
12秒前
笑傲江湖完成签到,获得积分10
12秒前
狠毒的小龙虾完成签到,获得积分10
12秒前
过昭关完成签到,获得积分10
13秒前
黑粉头头完成签到,获得积分10
13秒前
lxlcx完成签到,获得积分0
14秒前
zhuxd完成签到,获得积分10
14秒前
gy完成签到,获得积分20
14秒前
沉静的浩然完成签到 ,获得积分10
15秒前
李李李李李完成签到,获得积分10
15秒前
发呆的小号完成签到 ,获得积分10
16秒前
X先生完成签到 ,获得积分10
19秒前
Chloe完成签到,获得积分10
19秒前
冷艳的冬萱完成签到,获得积分10
19秒前
药药完成签到 ,获得积分10
20秒前
冬瓜鑫完成签到 ,获得积分10
22秒前
Qing完成签到 ,获得积分10
24秒前
赵田完成签到 ,获得积分10
28秒前
所所应助echo采纳,获得10
29秒前
郭帅完成签到,获得积分10
29秒前
小张同学完成签到 ,获得积分10
31秒前
加一点荒谬完成签到,获得积分10
31秒前
sdzl完成签到,获得积分10
31秒前
格子完成签到,获得积分10
32秒前
嘟嘟喂嘟嘟完成签到,获得积分10
32秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008855
求助须知:如何正确求助?哪些是违规求助? 3548508
关于积分的说明 11299006
捐赠科研通 3283151
什么是DOI,文献DOI怎么找? 1810290
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811220