High-order Proximity Preserved Embedding For Dynamic Networks

计算机科学 嵌入 光学(聚焦) 特征向量 算法 理论计算机科学 人工智能 物理 量子力学 光学
作者
Dingyuan Zhu,Peng Cui,Ziwei Zhang,Jian Pei,Wenwu Zhu
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:105
标识
DOI:10.1109/tkde.2018.2822283
摘要

Network embedding, aiming to embed a network into a low dimensional vector space while preserving the inherent structural properties of the network, has attracted considerable attention. However, most existing embedding methods focus on the static network while neglecting the evolving characteristic of real-world networks. Meanwhile, most of previous methods cannot well preserve the high-order proximity, which is a critical structural property of networks. These problems motivate us to seek an effective and efficient way to preserve the high-order proximity in embedding vectors when the networks evolve over time. In this paper, we propose a novel method of Dynamic High-order Proximity preserved Embedding (DHPE). Specifically, we adopt the generalized SVD (GSVD) to preserve the high-order proximity. Then, by transforming the GSVD problem to a generalized eigenvalue problem, we propose a generalized eigen perturbation to incrementally update the results of GSVD to incorporate the changes of dynamic networks. Further, we propose an accelerated solution to the DHPE model so that it achieves a linear time complexity with respect to the number of nodes and number of changed edges in the network. Our empirical experiments on one synthetic network and several real-world networks demonstrate the effectiveness and efficiency of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
海鲭完成签到,获得积分10
1秒前
可爱的函函应助Flying016采纳,获得30
2秒前
柠檬完成签到,获得积分20
4秒前
加油发布了新的文献求助10
4秒前
欣喜面包完成签到,获得积分10
7秒前
ding应助cuidalice采纳,获得10
8秒前
10秒前
13秒前
14秒前
南国有佳人完成签到,获得积分10
15秒前
星辰大海应助fzh采纳,获得20
15秒前
yuHS发布了新的文献求助10
18秒前
Owen应助wei采纳,获得10
18秒前
李健应助何佳妮采纳,获得10
19秒前
英姑应助天真的冬寒采纳,获得10
19秒前
量子星尘发布了新的文献求助10
20秒前
21秒前
22秒前
24秒前
桐桐应助高姐姐采纳,获得10
25秒前
lucy4472完成签到,获得积分20
25秒前
26秒前
YH应助尊敬寒松采纳,获得50
26秒前
Tsui发布了新的文献求助10
26秒前
28秒前
Tuan发布了新的文献求助10
28秒前
九湖夷上发布了新的文献求助10
29秒前
Flying016发布了新的文献求助30
30秒前
研友_ZrldbL发布了新的文献求助30
30秒前
31秒前
Miracle发布了新的文献求助10
32秒前
Ting完成签到,获得积分10
33秒前
CZYW完成签到 ,获得积分10
33秒前
35秒前
Tuan完成签到,获得积分10
38秒前
黄东胜完成签到,获得积分10
38秒前
41秒前
Yin完成签到,获得积分10
41秒前
42秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959401
求助须知:如何正确求助?哪些是违规求助? 3505622
关于积分的说明 11124998
捐赠科研通 3237410
什么是DOI,文献DOI怎么找? 1789120
邀请新用户注册赠送积分活动 871577
科研通“疑难数据库(出版商)”最低求助积分说明 802844