Ultrasmall Fe2GeO4 nanodots anchored on interconnected carbon nanosheets as high-performance anode materials for lithium and sodium ion batteries

阳极 纳米点 材料科学 锂(药物) 电池(电) 电极 电化学 化学工程 纳米技术 碳纤维 钠离子电池 离子 复合数 复合材料 化学 法拉第效率 物理 工程类 内分泌学 物理化学 功率(物理) 有机化学 医学 量子力学
作者
Jun Han,Jian Qin,Lichao Guo,Kaiqiang Qin,Naiqin Zhao,Chunsheng Shi,Enzuo Liu,Fang He,Liying Ma,Chunnian He
出处
期刊:Applied Surface Science [Elsevier]
卷期号:427: 670-679 被引量:34
标识
DOI:10.1016/j.apsusc.2017.08.026
摘要

Poor intrinsic conductivity and huge volume expansion during charge/discharge process greatly limit the development of Ge-based ternary oxide as anode material for both lithium-ion batteries and sodium-ion batteries. To alleviate these issues, an ideal strategy is developed to achieve active particle nanocrystallization and composite with conductive carbon materials, simultaneously. Therefore, ultrasmall Fe2GeO4 nanodots (∼4.6 nm) uniformly and tightly anchored on 3D interconnected N-doped ultrathin carbon nanosheets (3D Fe2GeO4/N-CNSs) were constructed via one-step high temperature calcination process. This unique hybrid nanostructure can not only effectively enhance electron conductivity but also restrict the aggregation and volume fluctuation of Fe2GeO4 during the charge/discharge process. As a result, the 3D Fe2GeO4/N-CNSs electrode exhibited excellent electrochemical performances for both lithium-ion and sodium-ion battery anodes. When utilized for lithium-ion battery anode, the electrode delivered a highly reversible specific capacity (1280 mA h g−1 at 0.4 A g−1 after 180 cycles). It is the first time that Fe2GeO4 was applied for sodium-ion battery anode, which showed a remarkable rate capability (350 mA h g−1 at 0.1 A g−1 and 180 mA h g−1 at 22.8 A g−1), and ultralong cycling stability (∼86% reversible capacity retention after 6000 cycles).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xia发布了新的文献求助10
刚刚
SCI发布了新的文献求助10
1秒前
1秒前
zhui发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
马静雨完成签到,获得积分20
2秒前
3秒前
3秒前
快乐小白菜应助shenzhou9采纳,获得10
3秒前
无花果应助aertom采纳,获得10
3秒前
小田发布了新的文献求助10
3秒前
sankumao发布了新的文献求助30
3秒前
奋斗的盼柳完成签到 ,获得积分10
4秒前
5秒前
Jasper应助handsomecat采纳,获得10
5秒前
5秒前
李雪完成签到,获得积分10
6秒前
6秒前
sv发布了新的文献求助10
8秒前
小田完成签到,获得积分10
8秒前
茶茶完成签到,获得积分20
8秒前
苏兴龙完成签到,获得积分10
8秒前
坚强的亦云-333完成签到,获得积分10
8秒前
Ava应助dan1029采纳,获得10
9秒前
9秒前
9秒前
奶糖最可爱完成签到,获得积分10
10秒前
10秒前
mojomars发布了新的文献求助10
11秒前
幽壑之潜蛟应助茶茶采纳,获得10
11秒前
12秒前
12秒前
12秒前
迅速海云完成签到,获得积分10
12秒前
sjxx发布了新的文献求助10
12秒前
12秒前
乐乐应助Rachel采纳,获得10
13秒前
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794