碳化钨
原位
钨
化学反应
化学改性
化学
材料科学
碳化物
化学工程
机械化学
有机化学
高分子化学
工程类
作者
Manel Rodríguez Ripoll,Vladimir Totolin,Pedro O. Bedolla,Ichiro Minami
出处
期刊:ACS Sustainable Chemistry & Engineering
[American Chemical Society]
日期:2017-06-20
卷期号:5 (8): 7030-7039
被引量:6
标识
DOI:10.1021/acssuschemeng.7b01258
摘要
This work presents a novel method for generating in situ low friction tribofilms in lubricated contacts using α-amino acid l-methionine as an additive. Methionine is an environmentally acceptable natural organosulphur compound that is commonly used in the food industry. Our approach relies in the use of steel surfaces functionalized with tungsten carbide particles that are tailored to interact with methionine via a tribo-chemical reaction. The results show that after an induction period, the friction drops dramatically by 60% down to values of 0.06 when methionine was used as an additive in lubricated tungsten carbide-functionalized surfaces. The low friction could only be achieved by the coexistence of tungsten from the functionalized surfaces and sulfur from methionine, which led to the presence of tribo-chemically generated tribofilms. Ab initio simulations indicate that the tribo-chemical reaction for forming tungsten disulfide is energetically favorable, thus attributing the observed friction reduction mechanism to the in situ formation of this compound during the sliding process. The concept of functionalizing surfaces to react with specific additives opens up a wide range of possibilities, which allows tuning surfaces to target specific additive interactions. This synergy can be exploited for using novel green additive technology, thus allowing more environmentally friendly formulations with outstanding tribological performance.
科研通智能强力驱动
Strongly Powered by AbleSci AI