数学
多边形网格
学位(音乐)
间断伽辽金法
先验与后验
规范(哲学)
趋同(经济学)
应用数学
多项式次数
伽辽金法
数学分析
多项式的
有限元法
几何学
物理
哲学
认识论
政治学
声学
法学
经济
热力学
经济增长
作者
Bernardo Cockburn,Guido Kanschat,Dominik Schötzau,Christoph Schwab
出处
期刊:Research report / Seminar für Angewandte Mathematik
日期:2000-01-01
卷期号:2000 (14)
被引量:2
标识
DOI:10.3929/ethz-a-004288615
摘要
In this paper, we introduce and analyze local discontinuous Galerkin methods for the Stokes system. For a class of shape regular meshes with hanging nodes we derive a priori estimates for the L2-norm of the errors in the velocities and the pressure. We show that optimal-order estimates are obtained when polynomials of degree k are used for each component of the velocity and polynomials of degree k-1 for the pressure, for any $k\ge1$. We also consider the case in which all the unknowns are approximated with polynomials of degree k and show that, although the orders of convergence remain the same, the method is more efficient. Numerical experiments verifying these facts are displayed.
科研通智能强力驱动
Strongly Powered by AbleSci AI