Distinguishing Endogenous Retroviral LTRs from SINE Elements Using Features Extracted from Evolved Side Effect Machines

内生 内源性逆转录病毒 正弦 计算生物学 生物 计算机科学 生物系统 遗传学 数学 基因组 生物化学 几何学 基因
作者
Wendy Ashlock,Samir Datta
出处
期刊:IEEE/ACM Transactions on Computational Biology and Bioinformatics [Institute of Electrical and Electronics Engineers]
卷期号:9 (6): 1676-1689 被引量:16
标识
DOI:10.1109/tcbb.2012.116
摘要

Side effect machines produce features for classifiers that distinguish different types of DNA sequences. They have the, as yet unexploited, potential to give insight into biological features of the sequences. We introduce several innovations to the production and use of side effect machine sequence features. We compare the results of using consensus sequences and genomic sequences for training classifiers and find that more accurate results can be obtained using genomic sequences. Surprisingly, we were even able to build a classifier that distinguished consensus sequences from genomic sequences with high accuracy, suggesting that consensus sequences are not always representative of their genomic counterparts. We apply our techniques to the problem of distinguishing two types of transposable elements, solo LTRs and SINEs. Identifying these sequences is important because they affect gene expression, genome structure, and genetic diversity, and they serve as genetic markers. They are of similar length, neither codes for protein, and both have many nearly identical copies throughout the genome. Being able to efficiently and automatically distinguish them will aid efforts to improve annotations of genomes. Our approach reveals structural characteristics of the sequences of potential interest to biologists.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yziii发布了新的文献求助10
刚刚
xu发布了新的文献求助20
刚刚
邱寻绿完成签到,获得积分10
1秒前
1秒前
Jey发布了新的文献求助10
1秒前
十七完成签到 ,获得积分10
2秒前
七zi发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
4秒前
安静完成签到,获得积分10
4秒前
帆帆帆发布了新的文献求助10
4秒前
岑666完成签到,获得积分10
4秒前
jiap1120完成签到,获得积分10
4秒前
mangle完成签到,获得积分10
4秒前
mujinxin完成签到,获得积分10
5秒前
树德完成签到,获得积分10
5秒前
l六分之一完成签到,获得积分10
5秒前
青衣完成签到,获得积分10
6秒前
zhangxf608发布了新的文献求助30
6秒前
6秒前
7秒前
顺利萧完成签到,获得积分10
7秒前
orixero应助科研通管家采纳,获得10
7秒前
我是老大应助科研通管家采纳,获得10
7秒前
8秒前
英姑应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得50
8秒前
田様应助科研通管家采纳,获得10
8秒前
星辰大海应助科研通管家采纳,获得10
8秒前
JamesPei应助科研通管家采纳,获得10
8秒前
Owen应助科研通管家采纳,获得10
8秒前
囿于一隅发布了新的文献求助10
8秒前
田様应助科研通管家采纳,获得10
8秒前
传奇3应助科研通管家采纳,获得10
8秒前
fufufuxia发布了新的文献求助20
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303593
求助须知:如何正确求助?哪些是违规求助? 2937893
关于积分的说明 8484865
捐赠科研通 2611823
什么是DOI,文献DOI怎么找? 1426334
科研通“疑难数据库(出版商)”最低求助积分说明 662567
邀请新用户注册赠送积分活动 647118