亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Image analysis and machine learning in digital pathology: Challenges and opportunities

数字化病理学 计算机科学 心灵感应学 人工智能 大数据 背景(考古学) 分割 图像分割 特征提取 计算机视觉 特征(语言学) 数字图像 模式识别(心理学) 医学影像学 图像处理 图像(数学) 数据挖掘 古生物学 哲学 医疗保健 经济 生物 经济增长 语言学 远程医疗
作者
Anant Madabhushi,George Lee
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:33: 170-175 被引量:658
标识
DOI:10.1016/j.media.2016.06.037
摘要

With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助AXX041795采纳,获得10
4秒前
星星科语发布了新的文献求助10
4秒前
简单发布了新的文献求助20
5秒前
魔幻的芳完成签到,获得积分10
9秒前
SSY发布了新的文献求助10
9秒前
火星上的宝马完成签到,获得积分10
12秒前
平淡的衣发布了新的文献求助20
13秒前
14秒前
悲凉的忆南完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
19秒前
陈旧完成签到,获得积分10
19秒前
22秒前
22秒前
欣欣子完成签到,获得积分10
23秒前
虚拟的清炎完成签到 ,获得积分10
25秒前
sunstar完成签到,获得积分10
26秒前
XXXXXX发布了新的文献求助10
29秒前
yxl完成签到,获得积分10
30秒前
可耐的盈完成签到,获得积分10
33秒前
绿毛水怪完成签到,获得积分10
36秒前
yg发布了新的文献求助10
38秒前
lsc完成签到,获得积分10
40秒前
XXXXXX完成签到,获得积分10
42秒前
42秒前
星星科语完成签到,获得积分20
42秒前
小fei完成签到,获得积分10
44秒前
andrele发布了新的文献求助10
47秒前
麻辣薯条完成签到,获得积分10
47秒前
hanlin给滕祥的求助进行了留言
49秒前
时尚身影完成签到,获得积分10
51秒前
leoduo完成签到,获得积分0
54秒前
ryx发布了新的文献求助10
56秒前
流苏2完成签到,获得积分10
57秒前
58秒前
斯文败类应助科研通管家采纳,获得30
1分钟前
上官若男应助科研通管家采纳,获得10
1分钟前
1分钟前
1分钟前
绍华发布了新的文献求助10
1分钟前
可耐的月饼完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723656
求助须知:如何正确求助?哪些是违规求助? 5279993
关于积分的说明 15299011
捐赠科研通 4872033
什么是DOI,文献DOI怎么找? 2616484
邀请新用户注册赠送积分活动 1566311
关于科研通互助平台的介绍 1523187