Image analysis and machine learning in digital pathology: Challenges and opportunities

数字化病理学 计算机科学 心灵感应学 人工智能 大数据 背景(考古学) 分割 图像分割 特征提取 计算机视觉 特征(语言学) 数字图像 模式识别(心理学) 医学影像学 图像处理 图像(数学) 数据挖掘 古生物学 哲学 医疗保健 经济 生物 经济增长 语言学 远程医疗
作者
Anant Madabhushi,George Lee
出处
期刊:Medical Image Analysis [Elsevier BV]
卷期号:33: 170-175 被引量:658
标识
DOI:10.1016/j.media.2016.06.037
摘要

With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
xiejinhui发布了新的文献求助10
2秒前
kiki完成签到 ,获得积分10
2秒前
铁甲小宝发布了新的文献求助10
2秒前
Shinewei发布了新的文献求助10
2秒前
3秒前
3秒前
久9完成签到 ,获得积分10
5秒前
5秒前
cquank完成签到,获得积分10
6秒前
ZoraZeng完成签到,获得积分10
6秒前
6秒前
虚心的寒梦完成签到,获得积分10
7秒前
炫哥IRIS完成签到,获得积分10
7秒前
牧童完成签到,获得积分10
7秒前
HenryXiao发布了新的文献求助10
7秒前
顺利紫山发布了新的文献求助10
8秒前
ZZRR完成签到,获得积分10
8秒前
英姑应助耶耶耶耶耶采纳,获得10
9秒前
渝儿发布了新的文献求助10
10秒前
可靠薯片完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
12秒前
踏实的大地完成签到,获得积分10
12秒前
xiejinhui完成签到,获得积分20
13秒前
13秒前
13秒前
孙刚发布了新的文献求助10
13秒前
14秒前
FashionBoy应助唠嗑在呐采纳,获得10
14秒前
狡猾的菠萝完成签到 ,获得积分10
15秒前
Elena发布了新的文献求助10
16秒前
落叶应助包容的瑾瑜采纳,获得10
16秒前
JayChou完成签到 ,获得积分10
16秒前
17秒前
小飞飞发布了新的文献求助10
17秒前
17秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987078
求助须知:如何正确求助?哪些是违规求助? 3529488
关于积分的说明 11245360
捐赠科研通 3267987
什么是DOI,文献DOI怎么找? 1804013
邀请新用户注册赠送积分活动 881270
科研通“疑难数据库(出版商)”最低求助积分说明 808650