已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Image analysis and machine learning in digital pathology: Challenges and opportunities

数字化病理学 计算机科学 心灵感应学 人工智能 大数据 背景(考古学) 分割 图像分割 特征提取 计算机视觉 特征(语言学) 数字图像 模式识别(心理学) 医学影像学 图像处理 图像(数学) 数据挖掘 古生物学 哲学 医疗保健 经济 生物 经济增长 语言学 远程医疗
作者
Anant Madabhushi,George Lee
出处
期刊:Medical Image Analysis [Elsevier]
卷期号:33: 170-175 被引量:658
标识
DOI:10.1016/j.media.2016.06.037
摘要

With the rise in whole slide scanner technology, large numbers of tissue slides are being scanned and represented and archived digitally. While digital pathology has substantial implications for telepathology, second opinions, and education there are also huge research opportunities in image computing with this new source of "big data". It is well known that there is fundamental prognostic data embedded in pathology images. The ability to mine "sub-visual" image features from digital pathology slide images, features that may not be visually discernible by a pathologist, offers the opportunity for better quantitative modeling of disease appearance and hence possibly improved prediction of disease aggressiveness and patient outcome. However the compelling opportunities in precision medicine offered by big digital pathology data come with their own set of computational challenges. Image analysis and computer assisted detection and diagnosis tools previously developed in the context of radiographic images are woefully inadequate to deal with the data density in high resolution digitized whole slide images. Additionally there has been recent substantial interest in combining and fusing radiologic imaging and proteomics and genomics based measurements with features extracted from digital pathology images for better prognostic prediction of disease aggressiveness and patient outcome. Again there is a paucity of powerful tools for combining disease specific features that manifest across multiple different length scales. The purpose of this review is to discuss developments in computational image analysis tools for predictive modeling of digital pathology images from a detection, segmentation, feature extraction, and tissue classification perspective. We discuss the emergence of new handcrafted feature approaches for improved predictive modeling of tissue appearance and also review the emergence of deep learning schemes for both object detection and tissue classification. We also briefly review some of the state of the art in fusion of radiology and pathology images and also combining digital pathology derived image measurements with molecular "omics" features for better predictive modeling. The review ends with a brief discussion of some of the technical and computational challenges to be overcome and reflects on future opportunities for the quantitation of histopathology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
欢呼乘风应助南川石采纳,获得50
2秒前
丘比特应助Villanellel采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
AN应助科研通管家采纳,获得100
3秒前
leemonster发布了新的文献求助10
3秒前
3秒前
科研通AI6应助桀桀桀采纳,获得10
4秒前
巨型肥猫完成签到 ,获得积分10
5秒前
开心凌柏发布了新的文献求助10
10秒前
srics完成签到,获得积分10
11秒前
13秒前
QingCress77完成签到,获得积分10
13秒前
13秒前
18秒前
18秒前
科研通AI6应助留胡子的邑采纳,获得10
18秒前
18秒前
Bloomy发布了新的文献求助10
19秒前
anan完成签到,获得积分10
20秒前
20秒前
ht发布了新的文献求助10
22秒前
22秒前
ZhuJing发布了新的文献求助10
22秒前
Hello应助YYYhl采纳,获得10
22秒前
syyw2021发布了新的文献求助10
23秒前
晓晓鹤发布了新的文献求助30
25秒前
Greyson发布了新的文献求助10
25秒前
26秒前
26秒前
呆呆完成签到 ,获得积分10
26秒前
Greyson发布了新的文献求助10
28秒前
Greyson发布了新的文献求助10
28秒前
Greyson发布了新的文献求助10
28秒前
胡萝卜完成签到 ,获得积分10
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627406
求助须知:如何正确求助?哪些是违规求助? 4713679
关于积分的说明 14962084
捐赠科研通 4784593
什么是DOI,文献DOI怎么找? 2554835
邀请新用户注册赠送积分活动 1516330
关于科研通互助平台的介绍 1476693