Abstract A large number of pathogenic microorganisms cause rice diseases that lead to enormous yield losses worldwide. Such losses are important because rice is a staple food for more than half of the world's population. Over the past two decades, the extensive study of the molecular interactions between rice and the fungal pathogen Magnaporthe oryzae and between rice and the bacterial pathogen Xanthomonas oryzae pv. oryzae has made rice a model for investigating plant–microbe interactions of monocotyledons. Impressive progress has been recently achieved in understanding the molecular basis of rice pathogen-associated molecular pattern-immunity and effector-triggered immunity. Here, we briefly summarize these recent advances, emphasizing the diverse functions of the structurally conserved fungal effectors, the regulatory mechanisms of the immune receptor complexes, and the novel strategies for breeding disease resistance. We also discuss future research challenges.