Tuning Promoter Strength through RNA Polymerase Binding Site Design in Escherichia coli

发起人 RNA聚合酶 抑制因子 生物 结合位点 基因表达 遗传学 抄写(语言学) 分子生物学 细菌转录 基因 计算生物学 核糖核酸 语言学 哲学
作者
Robert C. Brewster,Daniel L. Jones,Rob Phillips
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:8 (12): e1002811-e1002811 被引量:168
标识
DOI:10.1371/journal.pcbi.1002811
摘要

One of the paramount goals of synthetic biology is to have the ability to tune transcriptional networks to targeted levels of expression at will. As a step in that direction, we have constructed a set of 18 unique binding sites for E. coli RNA Polymerase (RNAP) δ⁷⁰ holoenzyme, designed using a model of sequence-dependent binding energy combined with a thermodynamic model of transcription to produce a targeted level of gene expression. This promoter set allows us to determine the correspondence between the absolute numbers of mRNA molecules or protein products and the predicted promoter binding energies measured in k(B)T energy units. These binding sites adhere on average to the predicted level of gene expression over 3 orders of magnitude in constitutive gene expression, to within a factor of 3 in both protein and mRNA copy number. With these promoters in hand, we then place them under the regulatory control of a bacterial repressor and show that again there is a strict correspondence between the measured and predicted levels of expression, demonstrating the transferability of the promoters to an alternate regulatory context. In particular, our thermodynamic model predicts the expression from our promoters under a range of repressor concentrations between several per cell up to over 100 per cell. After correcting the predicted polymerase binding strength using the data from the unregulated promoter, the thermodynamic model accurately predicts the expression for the simple repression strains to within 30%. Demonstration of modular promoter design, where parts of the circuit (such as RNAP/TF binding strength and transcription factor copy number) can be independently chosen from a stock list and combined to give a predictable result, has important implications as an engineering tool for use in synthetic biology.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sid完成签到,获得积分10
1秒前
1秒前
汉堡包应助重要白山采纳,获得10
1秒前
1秒前
aku30完成签到,获得积分10
1秒前
温暖果汁完成签到,获得积分10
1秒前
Hannah完成签到,获得积分10
1秒前
2秒前
Henry完成签到,获得积分10
3秒前
超级的鞅发布了新的文献求助10
4秒前
顺心的水之完成签到,获得积分10
4秒前
4秒前
5秒前
SaSa发布了新的文献求助10
5秒前
caozhi完成签到,获得积分10
6秒前
墨aizhan完成签到,获得积分10
6秒前
7秒前
张慧仪完成签到 ,获得积分10
7秒前
8秒前
红枣枣枣发布了新的文献求助10
9秒前
超级的鞅完成签到,获得积分10
9秒前
小马加油完成签到 ,获得积分10
9秒前
汤翔完成签到,获得积分10
9秒前
weiwei完成签到,获得积分20
10秒前
jing111完成签到,获得积分10
10秒前
eli完成签到,获得积分10
10秒前
118QQ完成签到,获得积分10
10秒前
星辰与月完成签到,获得积分10
11秒前
慕青应助魔幻的迎曼采纳,获得10
12秒前
cuc完成签到,获得积分10
13秒前
大模型应助chnningji采纳,获得30
13秒前
fwch完成签到,获得积分10
14秒前
14秒前
dm11完成签到,获得积分10
14秒前
15秒前
anhuiwsy完成签到 ,获得积分10
15秒前
WenzongLai完成签到,获得积分10
15秒前
徐徐徐应助Nianqing采纳,获得10
16秒前
情怀应助cuc采纳,获得10
16秒前
lzr完成签到 ,获得积分10
16秒前
高分求助中
Evolution 10000
CANCER DISCOVERY癌症研究的新前沿:中国科研领军人物的创新构想 中国专刊 500
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
Die Gottesanbeterin: Mantis religiosa: 656 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158752
求助须知:如何正确求助?哪些是违规求助? 2809955
关于积分的说明 7884750
捐赠科研通 2468704
什么是DOI,文献DOI怎么找? 1314374
科研通“疑难数据库(出版商)”最低求助积分说明 630601
版权声明 602012