运动规划
可达性
非完整系统
随机树
计算机科学
范围(计算机科学)
数学优化
任务(项目管理)
障碍物
树(集合论)
采样(信号处理)
集合(抽象数据类型)
差速器(机械装置)
算法
人工智能
机器人
数学
移动机器人
工程类
数学分析
系统工程
滤波器(信号处理)
航空航天工程
法学
政治学
程序设计语言
计算机视觉
作者
Alexander Shkolnik,Matthew R. Walter,Russ Tedrake
标识
DOI:10.1109/robot.2009.5152874
摘要
Rapidly-exploring random trees (RRTs) are widely used to solve large planning problems where the scope prohibits the feasibility of deterministic solvers, but the efficiency of these algorithms can be severely compromised in the presence of certain kinodynamics constraints. Obstacle fields with tunnels, or tubes are notoriously difficult, as are systems with differential constraints, because the tree grows inefficiently at the boundaries. Here we present a new sampling strategy for the RRT algorithm, based on an estimated feasibility set, which affords a dramatic improvement in performance in these severely constrained systems. We demonstrate the algorithm with a detailed look at the expansion of an RRT in a swing up task, and on path planning for a nonholonomic car.
科研通智能强力驱动
Strongly Powered by AbleSci AI