Automation solutions for the evaluation of plant health in corn fields

自动化 RGB颜色模型 计算机科学 精准农业 领域(数学) 人工智能 农业工程 农业 机器学习 计算机视觉 工程类 数学 机械工程 生态学 纯数学 生物
作者
Dimitris Zermas,Da Teng,Panagiotis Stanitsas,Michael E. Bazakos,Daniel E. Kaiser,Vassilios Morellas,D. J. Mulla,Nikolaos Papanikolopoulos
标识
DOI:10.1109/iros.2015.7354309
摘要

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer infrequent and costly information to the farmers about the state of their fields. The proposed methodology promotes the use of small-scale Unmanned Aerial Vehicles (UAVs) and Computer Vision algorithms that operate with information in the visual (RGB) spectrum. Through this implementation, a lower cost solution for identifying N deficiencies is promoted. We provide extensive results on the use of commercial RGB sensors for delivering the essential information to farmers regarding the condition of their field, targeting the reduction of N fertilizers and the increase of the crop performance. Data is first collected by a UAV that hovers over a stressed area and collects high resolution RGB images at a low altitude. A recommendation algorithm identifies potential segments of the images that are candidates exhibiting N deficiency. Based on the feedback from experts in the area a training set is constructed utilizing the initial suggestions of the recommendation algorithm. Supervised learning methods are then used to characterize crop leaves that exhibit signs of N deficiency. The performance of 84.2% strongly supports the potential of this scheme to identify N-deficient leaves even in the case of images where the unhealthy leaves are heavily occluded by other healthy or stressed leaves.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
epmoctzyw完成签到 ,获得积分10
1秒前
唠叨的水风完成签到,获得积分10
1秒前
lll发布了新的文献求助10
1秒前
xiaobao完成签到,获得积分10
1秒前
谦让的仇血完成签到,获得积分10
1秒前
1秒前
1秒前
lullaby完成签到,获得积分10
2秒前
木子小样发布了新的文献求助10
2秒前
2秒前
核桃发布了新的文献求助30
2秒前
NexusExplorer应助NXK采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
科研通AI2S应助花生酱采纳,获得10
3秒前
锦李完成签到,获得积分10
3秒前
长情立诚完成签到,获得积分10
3秒前
善学以致用应助yannis2020采纳,获得10
3秒前
Cyrus完成签到 ,获得积分10
4秒前
4秒前
4秒前
4秒前
小璐璐呀发布了新的文献求助10
4秒前
李健的小迷弟应助111采纳,获得10
4秒前
依依发布了新的文献求助30
4秒前
高丽参完成签到,获得积分10
4秒前
julienCCC完成签到,获得积分10
4秒前
Sunbird发布了新的文献求助10
5秒前
dd完成签到,获得积分10
6秒前
www完成签到,获得积分10
6秒前
6秒前
7秒前
慕青应助科研通管家采纳,获得10
8秒前
shenya0810应助科研通管家采纳,获得10
8秒前
头哥应助科研通管家采纳,获得10
8秒前
BlooM发布了新的文献求助10
8秒前
英姑应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
浮游应助科研通管家采纳,获得10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Science of Synthesis: Houben–Weyl Methods of Molecular Transformations 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5524025
求助须知:如何正确求助?哪些是违规求助? 4614655
关于积分的说明 14543905
捐赠科研通 4552420
什么是DOI,文献DOI怎么找? 2494845
邀请新用户注册赠送积分活动 1475559
关于科研通互助平台的介绍 1447219