已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Automation solutions for the evaluation of plant health in corn fields

自动化 RGB颜色模型 计算机科学 精准农业 领域(数学) 人工智能 农业工程 农业 机器学习 计算机视觉 工程类 数学 机械工程 生态学 纯数学 生物
作者
Dimitris Zermas,Da Teng,Panagiotis Stanitsas,Michael E. Bazakos,Daniel E. Kaiser,Vassilios Morellas,D. J. Mulla,Nikolaos Papanikolopoulos
标识
DOI:10.1109/iros.2015.7354309
摘要

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer infrequent and costly information to the farmers about the state of their fields. The proposed methodology promotes the use of small-scale Unmanned Aerial Vehicles (UAVs) and Computer Vision algorithms that operate with information in the visual (RGB) spectrum. Through this implementation, a lower cost solution for identifying N deficiencies is promoted. We provide extensive results on the use of commercial RGB sensors for delivering the essential information to farmers regarding the condition of their field, targeting the reduction of N fertilizers and the increase of the crop performance. Data is first collected by a UAV that hovers over a stressed area and collects high resolution RGB images at a low altitude. A recommendation algorithm identifies potential segments of the images that are candidates exhibiting N deficiency. Based on the feedback from experts in the area a training set is constructed utilizing the initial suggestions of the recommendation algorithm. Supervised learning methods are then used to characterize crop leaves that exhibit signs of N deficiency. The performance of 84.2% strongly supports the potential of this scheme to identify N-deficient leaves even in the case of images where the unhealthy leaves are heavily occluded by other healthy or stressed leaves.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ymr完成签到 ,获得积分10
1秒前
文静听南完成签到 ,获得积分10
2秒前
3秒前
Ree完成签到,获得积分20
5秒前
Zeno完成签到 ,获得积分10
5秒前
所所应助吴中秋采纳,获得10
6秒前
asd1576562308完成签到 ,获得积分10
7秒前
欢喜的怜菡完成签到,获得积分10
7秒前
XIEYU发布了新的文献求助30
7秒前
Ree发布了新的文献求助10
11秒前
12秒前
LX有理想完成签到 ,获得积分10
13秒前
璎丸子完成签到,获得积分10
15秒前
TTT完成签到,获得积分10
15秒前
wan12138发布了新的文献求助10
17秒前
18秒前
脑洞疼应助夏律采纳,获得10
18秒前
量子星尘发布了新的文献求助10
21秒前
22秒前
刘佳慧完成签到,获得积分10
23秒前
absb驳回了田様应助
23秒前
上官若男应助材料生采纳,获得10
27秒前
29秒前
落尘发布了新的文献求助10
29秒前
30秒前
32秒前
pan完成签到,获得积分20
33秒前
夜话风陵杜完成签到 ,获得积分0
36秒前
pan发布了新的文献求助10
37秒前
小周发布了新的文献求助10
37秒前
39秒前
大方的怜寒完成签到 ,获得积分10
39秒前
bkagyin应助Kim采纳,获得10
42秒前
英俊的铭应助111采纳,获得10
42秒前
43秒前
啷个吃不饱完成签到 ,获得积分10
43秒前
慕青应助fxtx1234采纳,获得10
44秒前
材料生发布了新的文献求助10
45秒前
宣萱发布了新的文献求助10
45秒前
xinxin完成签到,获得积分10
46秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
Metagames: Games about Games 700
King Tyrant 640
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5573236
求助须知:如何正确求助?哪些是违规求助? 4659412
关于积分的说明 14724454
捐赠科研通 4599168
什么是DOI,文献DOI怎么找? 2524154
邀请新用户注册赠送积分活动 1494679
关于科研通互助平台的介绍 1464704