Automation solutions for the evaluation of plant health in corn fields

自动化 RGB颜色模型 计算机科学 精准农业 领域(数学) 人工智能 农业工程 农业 机器学习 计算机视觉 工程类 数学 机械工程 生态学 纯数学 生物
作者
Dimitris Zermas,Da Teng,Panagiotis Stanitsas,Michael E. Bazakos,Daniel E. Kaiser,Vassilios Morellas,D. J. Mulla,Nikolaos Papanikolopoulos
标识
DOI:10.1109/iros.2015.7354309
摘要

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer infrequent and costly information to the farmers about the state of their fields. The proposed methodology promotes the use of small-scale Unmanned Aerial Vehicles (UAVs) and Computer Vision algorithms that operate with information in the visual (RGB) spectrum. Through this implementation, a lower cost solution for identifying N deficiencies is promoted. We provide extensive results on the use of commercial RGB sensors for delivering the essential information to farmers regarding the condition of their field, targeting the reduction of N fertilizers and the increase of the crop performance. Data is first collected by a UAV that hovers over a stressed area and collects high resolution RGB images at a low altitude. A recommendation algorithm identifies potential segments of the images that are candidates exhibiting N deficiency. Based on the feedback from experts in the area a training set is constructed utilizing the initial suggestions of the recommendation algorithm. Supervised learning methods are then used to characterize crop leaves that exhibit signs of N deficiency. The performance of 84.2% strongly supports the potential of this scheme to identify N-deficient leaves even in the case of images where the unhealthy leaves are heavily occluded by other healthy or stressed leaves.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wwb完成签到,获得积分10
1秒前
一壶古酒应助wanglihong采纳,获得60
2秒前
2秒前
coster发布了新的文献求助10
3秒前
3秒前
玄轩发布了新的文献求助10
4秒前
5秒前
踏实的道消完成签到 ,获得积分10
7秒前
lfl发布了新的文献求助10
8秒前
刘丰发布了新的文献求助10
10秒前
13秒前
我是老大应助coster采纳,获得10
14秒前
fmwang完成签到,获得积分10
16秒前
jianlv发布了新的文献求助10
18秒前
高贵的尔蓝关注了科研通微信公众号
19秒前
19秒前
烟火还是永恒完成签到,获得积分10
21秒前
Charon发布了新的文献求助10
24秒前
27秒前
村霸懒洋洋完成签到,获得积分20
28秒前
arui完成签到,获得积分10
28秒前
ding应助Charon采纳,获得10
30秒前
coster完成签到,获得积分10
31秒前
neilphilosci完成签到 ,获得积分10
33秒前
33秒前
玄轩完成签到,获得积分10
36秒前
caleb完成签到,获得积分10
38秒前
wh雨发布了新的文献求助10
39秒前
gao发布了新的文献求助10
40秒前
所所应助lin采纳,获得10
43秒前
44秒前
44秒前
46秒前
简单幸福发布了新的文献求助10
47秒前
CipherSage应助单纯的爆米花采纳,获得10
48秒前
黑豆也完成签到,获得积分10
48秒前
水知寒完成签到,获得积分10
48秒前
Lifel发布了新的文献求助10
49秒前
小郭完成签到 ,获得积分10
51秒前
ray发布了新的文献求助10
53秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5558034
求助须知:如何正确求助?哪些是违规求助? 4642985
关于积分的说明 14670251
捐赠科研通 4584484
什么是DOI,文献DOI怎么找? 2514893
邀请新用户注册赠送积分活动 1489026
关于科研通互助平台的介绍 1459655