亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automation solutions for the evaluation of plant health in corn fields

自动化 RGB颜色模型 计算机科学 精准农业 领域(数学) 人工智能 农业工程 农业 机器学习 计算机视觉 工程类 数学 机械工程 生态学 纯数学 生物
作者
Dimitris Zermas,Da Teng,Panagiotis Stanitsas,Michael E. Bazakos,Daniel E. Kaiser,Vassilios Morellas,D. J. Mulla,Nikolaos Papanikolopoulos
标识
DOI:10.1109/iros.2015.7354309
摘要

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer infrequent and costly information to the farmers about the state of their fields. The proposed methodology promotes the use of small-scale Unmanned Aerial Vehicles (UAVs) and Computer Vision algorithms that operate with information in the visual (RGB) spectrum. Through this implementation, a lower cost solution for identifying N deficiencies is promoted. We provide extensive results on the use of commercial RGB sensors for delivering the essential information to farmers regarding the condition of their field, targeting the reduction of N fertilizers and the increase of the crop performance. Data is first collected by a UAV that hovers over a stressed area and collects high resolution RGB images at a low altitude. A recommendation algorithm identifies potential segments of the images that are candidates exhibiting N deficiency. Based on the feedback from experts in the area a training set is constructed utilizing the initial suggestions of the recommendation algorithm. Supervised learning methods are then used to characterize crop leaves that exhibit signs of N deficiency. The performance of 84.2% strongly supports the potential of this scheme to identify N-deficient leaves even in the case of images where the unhealthy leaves are heavily occluded by other healthy or stressed leaves.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
nefu biology完成签到,获得积分10
6秒前
nefu biology发布了新的文献求助10
9秒前
29秒前
梦将军应助FIN采纳,获得50
30秒前
31秒前
爱笑半莲发布了新的文献求助10
36秒前
Christina完成签到,获得积分20
41秒前
爱笑半莲完成签到,获得积分10
50秒前
53秒前
54秒前
完美世界应助科研通管家采纳,获得10
57秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
Lucas应助Christina采纳,获得30
1分钟前
wmz完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
JamesPei应助糊涂的万采纳,获得10
1分钟前
Christina发布了新的文献求助30
1分钟前
在水一方应助散装洋芋采纳,获得10
1分钟前
1分钟前
2分钟前
糊涂的万发布了新的文献求助10
2分钟前
小青椒应助FIN采纳,获得50
2分钟前
发AM完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
李智点发布了新的文献求助10
2分钟前
散装洋芋发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
白潇潇发布了新的文献求助10
3分钟前
Iso完成签到,获得积分10
3分钟前
清新的乐儿完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
Lucas应助白潇潇采纳,获得10
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 620
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5554861
求助须知:如何正确求助?哪些是违规求助? 4639412
关于积分的说明 14656222
捐赠科研通 4581365
什么是DOI,文献DOI怎么找? 2512722
邀请新用户注册赠送积分活动 1487466
关于科研通互助平台的介绍 1458410