Automation solutions for the evaluation of plant health in corn fields

自动化 RGB颜色模型 计算机科学 精准农业 领域(数学) 人工智能 农业工程 农业 机器学习 计算机视觉 工程类 数学 机械工程 生态学 纯数学 生物
作者
Dimitris Zermas,Da Teng,Panagiotis Stanitsas,Michael E. Bazakos,Daniel E. Kaiser,Vassilios Morellas,D. J. Mulla,Nikolaos Papanikolopoulos
标识
DOI:10.1109/iros.2015.7354309
摘要

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer infrequent and costly information to the farmers about the state of their fields. The proposed methodology promotes the use of small-scale Unmanned Aerial Vehicles (UAVs) and Computer Vision algorithms that operate with information in the visual (RGB) spectrum. Through this implementation, a lower cost solution for identifying N deficiencies is promoted. We provide extensive results on the use of commercial RGB sensors for delivering the essential information to farmers regarding the condition of their field, targeting the reduction of N fertilizers and the increase of the crop performance. Data is first collected by a UAV that hovers over a stressed area and collects high resolution RGB images at a low altitude. A recommendation algorithm identifies potential segments of the images that are candidates exhibiting N deficiency. Based on the feedback from experts in the area a training set is constructed utilizing the initial suggestions of the recommendation algorithm. Supervised learning methods are then used to characterize crop leaves that exhibit signs of N deficiency. The performance of 84.2% strongly supports the potential of this scheme to identify N-deficient leaves even in the case of images where the unhealthy leaves are heavily occluded by other healthy or stressed leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
asd发布了新的文献求助10
1秒前
Dece完成签到,获得积分20
1秒前
李春霞发布了新的文献求助10
3秒前
3秒前
学渣路过完成签到,获得积分10
4秒前
团子完成签到,获得积分10
5秒前
溧瑮栗子完成签到,获得积分10
6秒前
呼呼完成签到,获得积分20
6秒前
烂漫的幻梅完成签到,获得积分10
6秒前
7秒前
8秒前
Ava应助SJXS采纳,获得10
8秒前
欢呼晓博完成签到,获得积分10
9秒前
上进生发布了新的文献求助10
10秒前
Ava应助李春霞采纳,获得10
11秒前
丘比特应助TAN采纳,获得10
11秒前
12秒前
顾矜应助葡萄成熟采纳,获得10
12秒前
范慧晨发布了新的文献求助10
13秒前
14秒前
踏实半仙完成签到,获得积分10
15秒前
丘比特应助LIUYI采纳,获得10
15秒前
科研通AI2S应助Junanne采纳,获得10
16秒前
17秒前
刘贤华完成签到 ,获得积分10
19秒前
19秒前
caixukun发布了新的文献求助10
20秒前
ding应助顺利的源智采纳,获得10
20秒前
Summer完成签到 ,获得积分10
22秒前
22秒前
光芒万张完成签到 ,获得积分10
22秒前
23秒前
23秒前
拼搏老鼠完成签到,获得积分10
23秒前
啵啵虎发布了新的文献求助10
23秒前
坦率的友灵完成签到,获得积分10
24秒前
lg发布了新的文献求助10
25秒前
超级平凡发布了新的文献求助10
25秒前
窝窝头发布了新的文献求助10
26秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3161391
求助须知:如何正确求助?哪些是违规求助? 2812813
关于积分的说明 7897198
捐赠科研通 2471748
什么是DOI,文献DOI怎么找? 1316110
科研通“疑难数据库(出版商)”最低求助积分说明 631180
版权声明 602112