Automation solutions for the evaluation of plant health in corn fields

自动化 RGB颜色模型 计算机科学 精准农业 领域(数学) 人工智能 农业工程 农业 机器学习 计算机视觉 工程类 数学 机械工程 生态学 纯数学 生物
作者
Dimitris Zermas,Da Teng,Panagiotis Stanitsas,Michael E. Bazakos,Daniel E. Kaiser,Vassilios Morellas,D. J. Mulla,Nikolaos Papanikolopoulos
标识
DOI:10.1109/iros.2015.7354309
摘要

The continuously growing need for increasing the production of food and reducing the degradation of water supplies, has led to the development of several precision agriculture systems over the past decade so as to meet the needs of modern societies. The present study describes a methodology for the detection and characterization of Nitrogen (N) deficiencies in corn fields. Current methods of field surveillance are either completed manually or with the assistance of satellite imaging, which offer infrequent and costly information to the farmers about the state of their fields. The proposed methodology promotes the use of small-scale Unmanned Aerial Vehicles (UAVs) and Computer Vision algorithms that operate with information in the visual (RGB) spectrum. Through this implementation, a lower cost solution for identifying N deficiencies is promoted. We provide extensive results on the use of commercial RGB sensors for delivering the essential information to farmers regarding the condition of their field, targeting the reduction of N fertilizers and the increase of the crop performance. Data is first collected by a UAV that hovers over a stressed area and collects high resolution RGB images at a low altitude. A recommendation algorithm identifies potential segments of the images that are candidates exhibiting N deficiency. Based on the feedback from experts in the area a training set is constructed utilizing the initial suggestions of the recommendation algorithm. Supervised learning methods are then used to characterize crop leaves that exhibit signs of N deficiency. The performance of 84.2% strongly supports the potential of this scheme to identify N-deficient leaves even in the case of images where the unhealthy leaves are heavily occluded by other healthy or stressed leaves.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li'p发布了新的文献求助10
刚刚
我很懵逼发布了新的文献求助10
1秒前
1秒前
song完成签到,获得积分10
2秒前
曾经高跟鞋完成签到,获得积分10
2秒前
Chaga完成签到,获得积分10
3秒前
领导范儿应助sxy采纳,获得10
3秒前
共享精神应助sxy采纳,获得10
3秒前
田様应助sxy采纳,获得10
3秒前
orixero应助sxy采纳,获得10
3秒前
上官若男应助sxy采纳,获得10
3秒前
catch完成签到,获得积分10
3秒前
在路上关注了科研通微信公众号
4秒前
吾儿坤完成签到,获得积分10
4秒前
4秒前
汉堡包应助务实的机器猫采纳,获得10
5秒前
5秒前
sdsa121完成签到,获得积分10
6秒前
7秒前
杰尼龟发布了新的文献求助10
7秒前
壮观的觅柔完成签到,获得积分10
7秒前
wwl关闭了wwl文献求助
8秒前
8秒前
QL发布了新的文献求助10
8秒前
斯文败类应助夏天采纳,获得10
8秒前
未明的感觉完成签到,获得积分10
8秒前
9秒前
10秒前
月月完成签到,获得积分10
10秒前
孙佳美发布了新的文献求助10
10秒前
笛卡尔发布了新的文献求助10
11秒前
烟花应助宓天问采纳,获得10
11秒前
脱壳金蝉完成签到,获得积分10
12秒前
gyy发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
Brandy发布了新的文献求助10
13秒前
快乐酸奶关注了科研通微信公众号
14秒前
1111完成签到,获得积分10
14秒前
张波发布了新的文献求助10
15秒前
橙酒发布了新的文献求助10
15秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016711
求助须知:如何正确求助?哪些是违规求助? 3556869
关于积分的说明 11322988
捐赠科研通 3289588
什么是DOI,文献DOI怎么找? 1812514
邀请新用户注册赠送积分活动 888100
科研通“疑难数据库(出版商)”最低求助积分说明 812121