The bandgap engineering method using a SiGe source structure is presented as a means to suppress the floating-body effect in SOI MOSFET's. Experiments using Ge implantation are carried out to form a narrow-bandgapped SiGe layer in the source region. It has been confirmed that Ge-implanted SIMOX exhibited a 0.1 eV bandgap narrowing with a relatively low Ge-dosage of 10/sup 16/ cm/sup -2/. The fabricated N-type SOI-MOSFET's exhibited suppressed parasitic bipolar effects, such as improvement of the drain breakdown voltage or latch voltage, and suppression of abnormal subthreshold slope. Advantages over other conventional methods are also discussed, indicating that the bandgap engineering provides a practical method to suppress the floating-body effect.