Heterogeneous trajectories of depressive symptoms: Adolescent predictors and adult outcomes

社会心理的 干预(咨询) 潜在类模型 人际交往 抑郁症状 心理学 临床心理学 萧条(经济学) 年轻人 精神科 病因学 发展心理学 焦虑 社会心理学 统计 数学 经济 宏观经济学
作者
Ilya Yaroslavsky,Jeremy W. Pettit,Peter M. Lewinsohn,John R. Seeley,Robert E. Roberts
出处
期刊:Journal of Affective Disorders [Elsevier]
卷期号:148 (2-3): 391-399 被引量:115
标识
DOI:10.1016/j.jad.2012.06.028
摘要

Depressive symptoms display heterogeneous trajectories across adolescence and early adulthood. Identifying risk and protective factors for distinct trajectory groups, and their respective outcomes, may provide insight into the etiological underpinnings of different symptom courses and inform the targets and timing of intervention. A school-based sample of 719 adolescents completed four diagnostic evaluations and up to 7 annually mailed questionnaires assessing psychiatric symptoms and psychosocial risk and protective factors. Parental history of psychiatric disorder was assessed. Growth mixture modeling (GMM) was used to identify latent depressive symptom trajectories from mid-adolescence through age 30, as well as their predictors in mid-adolescence and adult outcomes. A three class model consisting of high stable (32%), moderate decreasing (44%), and low decreasing (24%) depressive symptom trajectories emerged as the preferred solution. Demographic, psychosocial, and psychiatric characteristics differentiated the low and high symptom classes, and provided support for interpersonal models of depression chronicity. Members of the moderate and high symptom classes evidenced the worst psychosocial and psychiatric outcomes by age 30, with members of the high symptom class showing the greatest levels of impairment. Cross-sectional measurement and floor effects of several predictor variables may have obscured the relations between those predictors and trajectory class membership. These findings suggest that prevention and intervention strategies may specifically target young women and those who experience poor interpersonal functioning in an effort to alter the course of depressive symptoms through early adulthood.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英俊寻真完成签到,获得积分10
1秒前
huiluowork发布了新的文献求助10
2秒前
hoyan完成签到,获得积分10
2秒前
Alger完成签到,获得积分10
3秒前
帅气的杰瑞完成签到,获得积分10
3秒前
Beracah发布了新的文献求助10
3秒前
柚子完成签到,获得积分10
3秒前
李馨完成签到,获得积分10
4秒前
Tina完成签到,获得积分10
4秒前
尹辉发布了新的文献求助10
4秒前
sunhealth完成签到,获得积分10
4秒前
4秒前
RickT发布了新的文献求助10
5秒前
鱼人完成签到,获得积分10
6秒前
6秒前
wlnhyF完成签到,获得积分10
6秒前
无极微光应助Tina采纳,获得20
8秒前
哈哈完成签到 ,获得积分10
8秒前
8秒前
JiangY完成签到,获得积分10
8秒前
似水年华完成签到 ,获得积分10
8秒前
wnw完成签到,获得积分10
9秒前
tianle完成签到,获得积分10
9秒前
盛夏蔚来完成签到 ,获得积分10
9秒前
豨莶完成签到,获得积分10
10秒前
大力的乐曲完成签到,获得积分10
11秒前
风车完成签到,获得积分10
11秒前
科研民工完成签到,获得积分10
11秒前
tikka完成签到,获得积分10
11秒前
大个应助呼呼采纳,获得10
11秒前
大钱哥完成签到,获得积分10
11秒前
123完成签到 ,获得积分10
11秒前
英姑应助好好学习采纳,获得10
12秒前
杨依楠完成签到,获得积分10
12秒前
酷炫煎饼完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
L3发布了新的文献求助10
13秒前
13秒前
小小太阳完成签到,获得积分10
13秒前
叽了咕噜完成签到 ,获得积分10
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5665044
求助须知:如何正确求助?哪些是违规求助? 4874526
关于积分的说明 15111251
捐赠科研通 4824178
什么是DOI,文献DOI怎么找? 2582656
邀请新用户注册赠送积分活动 1536612
关于科研通互助平台的介绍 1495236