氯
化学
反应速率常数
羟基化
动力学
激进的
降级(电信)
脱羧
高级氧化法
矿化(土壤科学)
去甲基化
核化学
无机化学
有机化学
光化学
催化作用
酶
基因表达
DNA甲基化
物理
基因
氮气
电信
量子力学
生物化学
计算机科学
作者
Yingying Xiang,Jingyun Fang,Chii Shang
标识
DOI:10.1016/j.watres.2015.11.069
摘要
The UV/chlorine advanced oxidation process (AOP), which forms reactive species such as hydroxyl radicals (HO) and reactive chlorine species (RCS) such as chlorine atoms (Cl) and Cl2(-), is being considered as an alternative to the UV/H2O2 AOP for the degradation of emerging contaminants. This study investigated the kinetics and pathways of the degradation of a recalcitrant pharmaceutical and personal care product (PPCP)-ibuprofen (IBP)-by the UV/chlorine AOP. The degradation of IBP followed the pseudo first-order kinetics. The first-order rate constant was 3.3 times higher in the UV/chlorine AOP than in the UV/H2O2 AOP for a given chemical molar dosage at pH 6. The first-order rate constant decreased from 3.1 × 10(-3) s(-1) to 5.5 × 10(-4) s(-1) with increasing pH from 6 to 9. Both HO and RCS contributed to the degradation, and the contribution of RCS increased from 22% to 30% with increasing pH from 6 to 9. The degradation was initiated by HO-induced hydroxylation and Cl-induced chlorine substitution, and sustained through decarboxylation, demethylation, chlorination and ring cleavage to form more stable products. Significant amounts of chlorinated intermediates/byproducts were formed from the UV/chlorine AOP, and four chlorinated products were newly identified. The yield of total organic chlorine (TOCl) was 31.6 μM after 90% degradation of 50 μM IBP under the experimental conditions. The known disinfection by-products (DBPs) comprised 17.4% of the TOCl. The effects of water matrix in filtered drinking water on the degradation were not significant, demonstrating the practicality of the UV/chlorine AOP for the control of some refractory PPCPs. However, the toxicity of the chlorinated products should be further assessed.
科研通智能强力驱动
Strongly Powered by AbleSci AI