Experimental Study and Prediction by Computational Fluid Dynamics on Self-induced Sloshing Due to Bubble Flow in a Rectangular Vessel

晃动动力学 机械 计算流体力学 气泡 流量(数学) 振幅 阻力 自由面 材料科学 体积流量 气流 物理 热力学 光学
作者
Ryohei Aoki,Satoko Fujioka,Koichi Terasaka
出处
期刊:Journal of Chemical Engineering of Japan [The Society of Chemical Engineers Japan]
卷期号:54 (2): 51-57 被引量:2
标识
DOI:10.1252/jcej.20we007
摘要

Self-induced sloshing is an oscillatory phenomenon of a free liquid surface due to the flow of a fluid. This phenomenon has been reported in some gas–liquid reactors, and it is important to predict and prevent its occurrence for the safe operation of the reactors. However, the fundamental knowledge on the self-induced sloshing by bubble flow, such as the frequency and amplitude, is insufficient, and the occurrence condition has not been clarified. The purpose of this study is to investigate the characteristics of self-induced sloshing by bubble flow experimentally. We attempt to reproduce self-induced sloshing by using computational fluid dynamics (CFD) and establish a CFD model for the prediction of the occurrence of self-induced sloshing. In the experiments, air bubbles were dispersed into a liquid from the bottom of a rectangular vessel. The effects of the air flow rate and static liquid height on the characteristics of self-induced sloshing were investigated experimentally by image analysis. The occurrence of self-induced sloshing was confirmed by increasing the airflow rate at a specific static liquid height. The amplitude reached a maximum at the static liquid height, where self-induced sloshing was most likely to occur, and the frequency decreased with increasing static liquid height. Next, in order to reproduce the self-induced sloshing through CFD, an appropriate drag model of the bubbles was selected. Although the amplitude was overestimated due to the absence of the foam layer, the predicted frequency agreed well with the experimental value. Finally, the movement of the circulation flow was analyzed, and its correlation with the self-induced sloshing was clarified.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
胖仔完成签到,获得积分10
刚刚
Chan0501完成签到,获得积分10
刚刚
1秒前
2秒前
2秒前
duxinyue发布了新的文献求助10
2秒前
汉堡转转转完成签到,获得积分10
3秒前
喵酱发布了新的文献求助30
3秒前
6666完成签到,获得积分10
3秒前
研友_VZG7GZ应助灵巧荆采纳,获得10
4秒前
wjn完成签到,获得积分10
4秒前
5秒前
竹子完成签到,获得积分10
5秒前
MAKEYF完成签到 ,获得积分10
5秒前
6秒前
Owen应助猪猪hero采纳,获得10
6秒前
7秒前
CipherSage应助海棠yiyi采纳,获得50
8秒前
Khr1stINK发布了新的文献求助10
8秒前
8秒前
脑洞疼应助卡卡采纳,获得10
8秒前
8秒前
Rrr发布了新的文献求助10
9秒前
科研通AI5应助zmy采纳,获得10
10秒前
William鉴哲发布了新的文献求助10
10秒前
情怀应助只道寻常采纳,获得10
11秒前
11秒前
cyy完成签到,获得积分20
11秒前
orixero应助小庄采纳,获得10
12秒前
13秒前
侦察兵发布了新的文献求助10
13秒前
司徒元瑶完成签到 ,获得积分10
13秒前
梓榆发布了新的文献求助10
13秒前
13秒前
sweetbearm应助通~采纳,获得10
13秒前
斯文败类应助成就映秋采纳,获得10
14秒前
123456完成签到,获得积分10
14秒前
14秒前
moonlin完成签到 ,获得积分10
14秒前
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527884
求助须知:如何正确求助?哪些是违规求助? 3108006
关于积分的说明 9287444
捐赠科研通 2805757
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709794