转录组
氧化磷酸化
癌症研究
转移
生物
下调和上调
乳腺癌
微转移
癌细胞
癌症
基因
遗传学
基因表达
生物化学
作者
Ryan T. Davis,Kerrigan Blake,Dennis Ma,Mari B. Ishak Gabra,Grace A. Hernandez,Anh The Phung,Ying Yang,Dustin Maurer,Austin E.Y.T. Lefebvre,Hamad Alshetaiwi,Zhengtao Xiao,Lei Zhu,Jason W. Locasale,Michelle A. Digman,Eric Mjolsness,Mei Kong,Zena Werb,Devon A. Lawson
标识
DOI:10.1038/s41556-020-0477-0
摘要
Although metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients. Pathway analysis revealed mitochondrial oxidative phosphorylation as the top pathway upregulated in micrometastases, in contrast to higher levels of glycolytic enzymes in primary tumour cells, which we corroborated by flow cytometric and metabolomic analyses. Pharmacological inhibition of oxidative phosphorylation dramatically attenuated metastatic seeding in the lungs, which demonstrates the functional importance of oxidative phosphorylation in metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in patients with breast cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI