作者
Qiong Hu,Jingya Yang,Baodong Xu,Jianxi Huang,Muhammad Sohail Memon,Gaofei Yin,Yelu Zeng,Jing Zhao,Ke Liu
摘要
Global biophysical products at decametric resolution derived from Sentinel-2 imagery have emerged as a promising dataset for fine-scale ecosystem modeling and agricultural monitoring. Evaluating uncertainties of different Sentinel-2 biophysical products over various regions and vegetation types is pivotal in the application of land surface models. In this study, we quantified the performance of Sentinel-2-derived Leaf Area Index (LAI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), and Fractional Vegetation Cover (FVC) estimates using global ground observations with consistent measurement criteria. Our results show that the accuracy of vegetation and non-vegetated classification based on Sentinel-2 surface reflectance products is greater than 95%, which indicates the vegetation identification is favorable for the practical application of biophysical estimates, as several LAI, FAPAR, and FVC retrievals were derived for non-vegetated pixels. The rate of best retrievals is similar between LAI and FAPAR estimates, both accounting for 87% of all vegetation pixels, while it is almost 100% for FVC estimates. Additionally, the Sentinel-2 FAPAR and FVC estimates agree well with ground-measurements-derived (GMD) reference maps, whereas a large discrepancy is observed for Sentinel-2 LAI estimates by comparing with both GMD effective LAI (LAIe) and actual LAI (LAI) reference maps. Furthermore, the uncertainties of Sentinel-2 LAI, FAPAR and FVC estimates are 1.09 m2/m2, 1.14 m2/m2, 0.13 and 0.17 through comparisons to ground LAIe, LAI, FAPAR, and FVC measurements, respectively. Given the temporal difference between Sentinel-2 observations and ground measurements, Sentinel-2 LAI estimates are more consistent with LAIe than LAI values. The robustness of evaluation results can be further improved as long as more multi-temporal ground measurements across different regions are obtained. Overall, this study provides fundamental information about the performance of Sentinel-2 LAI, FAPAR, and FVC estimates, which imbues our confidence in the broad applications of these decametric products.