数学
劈形算符
兰姆达
操作员(生物学)
组合数学
线性算子
不平等
离散数学
纯数学
数学分析
欧米茄
物理
量子力学
转录因子
基因
生物化学
光学
抑制因子
化学
有界函数
作者
Fereshteh Hashemi,Ali Farokhinia
标识
DOI:10.1216/rmj-2019-49-7-2175
摘要
We derive several more accurate operator Bellman and Aczel inequalities. Among other inequalities, it is shown that if $\Phi :\mathbb {B}( \mathscr {H} )\to \mathbb {B}( \mathscr {H})$ is a unital positive linear map, $A,B\in \mathbb {B}( \mathscr {H})$ are two contraction operators, and we take $0\le \lambda ,v\le 1$ and $p>1$, then $$ \Phi ( {{( I-A )}^{\frac {1}{p}}}{{\nabla }_{\lambda }}{{( I-B )}^{\frac {1}{p}}} ) \le {{( \Phi ( I-A{{\nabla }_{\lambda }}B ) )}^{\frac {1}{p}},} $$ which nicely improves the operator Bellman inequality.
科研通智能强力驱动
Strongly Powered by AbleSci AI