Using machine learning to predict post-operative depth of focus after cataract surgery with implantation of Tecnis Symfony

白内障手术 医学 光学(聚焦) 眼科 外科 验光服务 光学 物理
作者
Yang Liu,David Wei,Tao Bai,Jie Luo,Jennifer Wood,A Swati Vashisht,Shumin Zhang,Jianwei Xuan,Michael W. Kattan,Paul Coplan
出处
期刊:European Journal of Ophthalmology [SAGE]
卷期号:31 (6): 2938-2946 被引量:7
标识
DOI:10.1177/1120672121991777
摘要

To predict post-operative depth of focus (DoF) using machine learning techniques after cataract surgery with Tecnis Symfony implantation and determine associated impact factors.This was a retrospective cohort study among patients receiving Tecnis Symfony implantation, an extended-range-of-vision intraocular lens, during October 2016-January 2020 at Daqing Oilfield General Hospital, China. Four different predictive models were used to predict good post-operative DoF (⩾2.5 D): Extreme Gradient Boost (XGBoost), random forest (RF), LASSO penalized regression, and multivariable logistic regression (MLR). Apriori algorithm was employed to further explore the association between patient attributes and DoF.A total of 182 unique cases (143 patients) were included. The XGBoost model produced the best predictive accuracy compared to RF, LASSO, and MLR models. Overall performance of the best fitting XGBoost model was as follows: accuracy = 70.3%, AUC = 80.2%, sensitivity = 65.5%, and specificity = 87.5%. The Apriori algorithm identified six preoparative attributes with substantial effects on good post-operative DoF: low anterior chamber depth (ACD) (1.9 to <2.5 mm), smaller pupil size (1.7 to <2.5 mm), low-to-mid axial length (21 to <23 mm), minimum astigmatism degree (-0.2 to 0 diopter), low IOP (9 to <12 mmHg), and medium lens target refractive error (-0.5 to <-0.25 diopter).Machine Learning models were able to predict good post-operative DoF among cataract patients receiving a Tecnis Symfony ocular lens implantation. The accuracy of the model was above 70%. The Apriori algorithm identified six preoperative attributes with a strong association with post-operative DoF.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
充电宝应助木子采纳,获得10
2秒前
自由青柏发布了新的文献求助10
4秒前
GU发布了新的文献求助10
6秒前
浅浅的完成签到 ,获得积分10
7秒前
8秒前
jason完成签到,获得积分10
8秒前
lancer完成签到,获得积分10
8秒前
9秒前
桐桐应助科研民工采纳,获得10
11秒前
浅尝离白应助科研通管家采纳,获得30
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
8R60d8应助科研通管家采纳,获得10
12秒前
Candice应助科研通管家采纳,获得10
12秒前
13秒前
zing发布了新的文献求助10
13秒前
8R60d8应助科研通管家采纳,获得10
13秒前
在水一方应助科研通管家采纳,获得30
13秒前
Candice应助科研通管家采纳,获得10
13秒前
情怀应助科研通管家采纳,获得10
13秒前
科研通AI2S应助科研通管家采纳,获得10
13秒前
浅尝离白应助科研通管家采纳,获得30
13秒前
苹果丑应助科研通管家采纳,获得10
14秒前
科研小子完成签到 ,获得积分10
14秒前
酷波er应助科研通管家采纳,获得10
14秒前
咻咻应助科研通管家采纳,获得20
14秒前
有思想完成签到,获得积分10
15秒前
Hayat发布了新的文献求助10
19秒前
23秒前
23秒前
25秒前
开心子骞发布了新的文献求助20
25秒前
Nyxia完成签到,获得积分10
26秒前
从别后忆相逢完成签到 ,获得积分10
26秒前
123完成签到,获得积分20
26秒前
27秒前
congjia完成签到,获得积分10
28秒前
爱科研的小常完成签到,获得积分10
28秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262769
求助须知:如何正确求助?哪些是违规求助? 2903373
关于积分的说明 8325014
捐赠科研通 2573399
什么是DOI,文献DOI怎么找? 1398263
科研通“疑难数据库(出版商)”最低求助积分说明 654051
邀请新用户注册赠送积分活动 632668