阿利效应
博格达诺夫-塔肯分岔
鞍结分岔
跨临界分岔
分叉
数学
分叉理论的生物学应用
干草叉分叉
功能性反应
应用数学
统计物理学
控制理论(社会学)
霍普夫分叉
捕食者
分岔图
捕食
人口
非线性系统
物理
计算机科学
生态学
人口学
人工智能
社会学
生物
量子力学
控制(管理)
作者
Koushik Garain,Partha Sarathi Mandal
标识
DOI:10.1142/s0218127420502387
摘要
The article aims to study a prey–predator model which includes the Allee effect phenomena in prey growth function, density dependent death rate for predators and Beddington–DeAngelis type functional response. We notice the changes in the existence and stability of the equilibrium points due to the Allee effect. To investigate the complete global dynamics of the Allee model, we present here a two-parametric bifurcation diagram which describes the effect of density dependent death rate parameter of predator on dynamical changes of the system. We have also analyzed all possible local and global bifurcations that the system could go through, namely transcritical bifurcation, saddle-node bifurcation, Hopf-bifurcation, cusp bifurcation, Bogdanov–Takens bifurcation and homoclinic bifurcation. Finally, the impact of the Allee effect in the considered system is investigated by comparing the dynamics of both the systems with and without Allee effect.
科研通智能强力驱动
Strongly Powered by AbleSci AI