μ-law SGAN for generating spectra with more details in speech enhancement

计算机科学 光谱图 发电机(电路理论) 语音识别 鉴别器 谐波 人工智能 算法 电信 电压 物理 量子力学 探测器 功率(物理)
作者
Hongfeng Li,Yanyan Xu,Dengfeng Ke,Kaile Su
出处
期刊:Neural Networks [Elsevier BV]
卷期号:136: 17-27 被引量:8
标识
DOI:10.1016/j.neunet.2020.12.017
摘要

The goal of monaural speech enhancement is to separate clean speech from noisy speech. Recently, many studies have employed generative adversarial networks (GAN) to deal with monaural speech enhancement tasks. When using generative adversarial networks for this task, the output of the generator is a speech waveform or a spectrum, such as a magnitude spectrum, a mel-spectrum or a complex-valued spectrum. The spectra generated by current speech enhancement methods in the time–frequency domain usually lack details, such as consonants and harmonics with low energy. In this paper, we propose a new type of adversarial training framework for spectrum generation, named μ-law spectrum generative adversarial networks (μ-law SGAN). We introduce a trainable μ-law spectrum compression layer (USCL) into the proposed discriminator to compress the dynamic range of the spectrum. As a result, the compressed spectrum can display more detailed information. In addition, we use the spectrum transformed by USCL to regularize the generator’s training, so that the generator can pay more attention to the details of the spectrum. Experimental results on the open dataset Voice Bank + DEMAND show that μ-law SGAN is an effective generative adversarial architecture for speech enhancement. Moreover, visual spectrogram analysis suggests that μ-law SGAN pays more attention to the enhancement of low energy harmonics and consonants.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助MOhy采纳,获得10
刚刚
angrymax完成签到,获得积分10
2秒前
2秒前
2秒前
传奇3应助哆啦的空间站采纳,获得10
3秒前
Coco发布了新的文献求助10
4秒前
Jasper应助风趣的灵枫采纳,获得10
4秒前
大模型应助青年才俊采纳,获得10
5秒前
斯文败类应助青年才俊采纳,获得10
5秒前
5秒前
ding应助xiaohu采纳,获得10
6秒前
科研通AI5应助Yuanyuan采纳,获得10
6秒前
舒服的妙旋完成签到,获得积分20
7秒前
7秒前
托尔斯泰发布了新的文献求助10
7秒前
vulgar发布了新的文献求助10
8秒前
9秒前
儒雅的裘完成签到,获得积分10
11秒前
脑洞疼应助好好学习采纳,获得10
11秒前
xYueea完成签到 ,获得积分10
11秒前
12秒前
12秒前
谦让听白发布了新的文献求助10
13秒前
RosaRubra完成签到,获得积分10
13秒前
13秒前
替勾勾完成签到,获得积分10
14秒前
14秒前
15秒前
雾里完成签到,获得积分10
16秒前
16秒前
科研的豪哥完成签到 ,获得积分10
16秒前
xiaohu发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
替勾勾发布了新的文献求助10
19秒前
在水一方应助舒服的妙旋采纳,获得50
19秒前
19秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
By R. Scott Kretchmar - Practical Philosophy of Sport and Physical Activity - 2nd (second) Edition: 2nd (second) Edition 666
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4941236
求助须知:如何正确求助?哪些是违规求助? 4207331
关于积分的说明 13077272
捐赠科研通 3986120
什么是DOI,文献DOI怎么找? 2182459
邀请新用户注册赠送积分活动 1198059
关于科研通互助平台的介绍 1110324