亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

μ-law SGAN for generating spectra with more details in speech enhancement

计算机科学 光谱图 发电机(电路理论) 语音识别 鉴别器 谐波 人工智能 算法 电信 电压 物理 功率(物理) 量子力学 探测器
作者
Hongfeng Li,Yanyan Xu,Dengfeng Ke,Kaile Su
出处
期刊:Neural Networks [Elsevier]
卷期号:136: 17-27 被引量:8
标识
DOI:10.1016/j.neunet.2020.12.017
摘要

The goal of monaural speech enhancement is to separate clean speech from noisy speech. Recently, many studies have employed generative adversarial networks (GAN) to deal with monaural speech enhancement tasks. When using generative adversarial networks for this task, the output of the generator is a speech waveform or a spectrum, such as a magnitude spectrum, a mel-spectrum or a complex-valued spectrum. The spectra generated by current speech enhancement methods in the time–frequency domain usually lack details, such as consonants and harmonics with low energy. In this paper, we propose a new type of adversarial training framework for spectrum generation, named μ-law spectrum generative adversarial networks (μ-law SGAN). We introduce a trainable μ-law spectrum compression layer (USCL) into the proposed discriminator to compress the dynamic range of the spectrum. As a result, the compressed spectrum can display more detailed information. In addition, we use the spectrum transformed by USCL to regularize the generator’s training, so that the generator can pay more attention to the details of the spectrum. Experimental results on the open dataset Voice Bank + DEMAND show that μ-law SGAN is an effective generative adversarial architecture for speech enhancement. Moreover, visual spectrogram analysis suggests that μ-law SGAN pays more attention to the enhancement of low energy harmonics and consonants.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wesley完成签到 ,获得积分10
5秒前
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
jeff完成签到,获得积分10
6秒前
14秒前
15秒前
Nature应助qingcahng采纳,获得30
15秒前
无辜士萧发布了新的文献求助10
21秒前
29秒前
寻道图强应助ceeray23采纳,获得200
32秒前
34秒前
刘哈哈完成签到 ,获得积分10
34秒前
WU完成签到 ,获得积分10
39秒前
刻苦的小土豆完成签到 ,获得积分10
45秒前
45秒前
46秒前
48秒前
wq完成签到,获得积分10
49秒前
wq发布了新的文献求助10
52秒前
55秒前
57秒前
丘比特应助勤奋灵凡采纳,获得10
59秒前
ceeray23发布了新的文献求助20
1分钟前
1分钟前
123完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
勤奋灵凡发布了新的文献求助10
1分钟前
xiezizai完成签到,获得积分10
1分钟前
YuxinChen完成签到 ,获得积分10
1分钟前
1分钟前
瘦瘦以亦发布了新的文献求助10
1分钟前
瘦瘦以亦完成签到,获得积分10
1分钟前
1分钟前
1分钟前
Qinghen发布了新的文献求助10
1分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664136
求助须知:如何正确求助?哪些是违规求助? 4858127
关于积分的说明 15107210
捐赠科研通 4822602
什么是DOI,文献DOI怎么找? 2581577
邀请新用户注册赠送积分活动 1535787
关于科研通互助平台的介绍 1494017