Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning

蠕动 材料科学 高温合金 微观结构 合金 机器学习 计算机科学 冶金
作者
Yue Liu,Junming Wu,Zhichao Wang,Xiao‐Gang Lu,Maxim Avdeev,Siqi Shi,Chong‐Yu Wang,Tao Yu
出处
期刊:Acta Materialia [Elsevier]
卷期号:195: 454-467 被引量:205
标识
DOI:10.1016/j.actamat.2020.05.001
摘要

Creep rupture life is a key material parameter for service life and mechanical properties of Ni-based single crystal superalloy materials. Therefore, it is of much practical significance to accurately and efficiently predict creep life. Here, we develop a divide-and-conquer self-adaptive (DCSA) learning method incorporating multiple material descriptors for rational and accelerated prediction of the creep rupture life. We characterize a high-quality creep dataset of 266 alloy samples with such features as alloy composition, test temperature, test stress, and heat treatment process. In addition, five microstructural parameters related to creep process, including stacking fault energy, lattice parameter, mole fraction of the γ' phase, diffusion coefficient and shear modulus, are calculated and introduced by the CALPHAD (CALculation of PHAse Diagrams) method and basic materials structure-property relationships, that enables us to reveal the effect of microstructure on creep properties. The machine learning explorations conducted on the creep dataset demonstrate the potential of the approach to achieve higher prediction accuracy with RMSE, MAPE and R2 of 0.3839, 0.0003 and 0.9176 than five alternative state-of-the-art machine learning models. On the newly collected 8 alloy samples, the error between the predicted creep life value and the experimental measured value is within the acceptable range (6.4486 h–40.7159 h), further confirming the validity of our DCSA model. Essentially, our method can establish accurate structure-property relationship mapping for the creep rupture life in a faster and cheaper manner than experiments and is expected to serve for inverse design of alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
nightmare发布了新的文献求助10
2秒前
shabbow发布了新的文献求助100
2秒前
2秒前
YWJ完成签到,获得积分10
2秒前
2秒前
zklltt发布了新的文献求助10
3秒前
perfumei发布了新的文献求助10
3秒前
鲸鱼鱼发布了新的文献求助10
3秒前
林子昂发布了新的文献求助10
4秒前
4秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
小小发布了新的文献求助20
5秒前
5秒前
咸鱼发布了新的文献求助10
5秒前
5秒前
Owen应助南兮采纳,获得10
5秒前
123发布了新的文献求助10
6秒前
hardname发布了新的文献求助10
6秒前
执着的千万完成签到,获得积分10
6秒前
贝塔发布了新的文献求助10
6秒前
小小完成签到,获得积分20
7秒前
mmol发布了新的文献求助10
7秒前
李杰发布了新的文献求助10
7秒前
没烦恼完成签到,获得积分10
7秒前
二小完成签到 ,获得积分10
8秒前
8秒前
8秒前
9秒前
9秒前
10秒前
阳光的衫完成签到,获得积分10
10秒前
10秒前
无花果应助kento采纳,获得30
10秒前
ajia发布了新的文献求助20
10秒前
11秒前
酷波er应助zz采纳,获得10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5525966
求助须知:如何正确求助?哪些是违规求助? 4616113
关于积分的说明 14551945
捐赠科研通 4554358
什么是DOI,文献DOI怎么找? 2495803
邀请新用户注册赠送积分活动 1476217
关于科研通互助平台的介绍 1447879