Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning

蠕动 材料科学 高温合金 微观结构 合金 机器学习 计算机科学 冶金
作者
Yue Liu,Junming Wu,Zhichao Wang,Xiao‐Gang Lu,Maxim Avdeev,Siqi Shi,Chong‐Yu Wang,Tao Yu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:195: 454-467 被引量:169
标识
DOI:10.1016/j.actamat.2020.05.001
摘要

Creep rupture life is a key material parameter for service life and mechanical properties of Ni-based single crystal superalloy materials. Therefore, it is of much practical significance to accurately and efficiently predict creep life. Here, we develop a divide-and-conquer self-adaptive (DCSA) learning method incorporating multiple material descriptors for rational and accelerated prediction of the creep rupture life. We characterize a high-quality creep dataset of 266 alloy samples with such features as alloy composition, test temperature, test stress, and heat treatment process. In addition, five microstructural parameters related to creep process, including stacking fault energy, lattice parameter, mole fraction of the γ' phase, diffusion coefficient and shear modulus, are calculated and introduced by the CALPHAD (CALculation of PHAse Diagrams) method and basic materials structure-property relationships, that enables us to reveal the effect of microstructure on creep properties. The machine learning explorations conducted on the creep dataset demonstrate the potential of the approach to achieve higher prediction accuracy with RMSE, MAPE and R2 of 0.3839, 0.0003 and 0.9176 than five alternative state-of-the-art machine learning models. On the newly collected 8 alloy samples, the error between the predicted creep life value and the experimental measured value is within the acceptable range (6.4486 h–40.7159 h), further confirming the validity of our DCSA model. Essentially, our method can establish accurate structure-property relationship mapping for the creep rupture life in a faster and cheaper manner than experiments and is expected to serve for inverse design of alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
和花花发布了新的文献求助10
2秒前
猪猪hero应助卜婉君采纳,获得10
2秒前
小满吖发布了新的文献求助10
3秒前
4秒前
4秒前
科研通AI2S应助SteveRogers采纳,获得10
4秒前
kingcoming发布了新的文献求助10
5秒前
hzwdm1完成签到,获得积分10
6秒前
Akim应助Aurora采纳,获得10
7秒前
chensongyu发布了新的文献求助10
7秒前
听听发布了新的文献求助10
9秒前
科研通AI2S应助茂飞采纳,获得10
11秒前
12秒前
13秒前
小二郎应助嘻嘻嘻采纳,获得10
14秒前
丘比特应助kingcoming采纳,获得10
16秒前
南冥完成签到 ,获得积分10
16秒前
复杂的兔子完成签到,获得积分10
17秒前
华仔应助娟娟采纳,获得30
17秒前
凤梨完成签到,获得积分10
17秒前
18秒前
江蹇发布了新的文献求助10
18秒前
19秒前
华仔应助听听采纳,获得10
19秒前
朴实山兰发布了新的文献求助20
22秒前
超帅的行云完成签到,获得积分10
22秒前
yuyan发布了新的文献求助10
24秒前
xia发布了新的文献求助10
24秒前
24秒前
26秒前
江蹇完成签到,获得积分10
27秒前
NexusExplorer应助云海老采纳,获得10
28秒前
29秒前
30秒前
30秒前
欧石楠完成签到 ,获得积分10
31秒前
yuyan完成签到,获得积分10
33秒前
Guai完成签到,获得积分10
33秒前
adam发布了新的文献求助10
33秒前
DengLingjie发布了新的文献求助10
34秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959759
求助须知:如何正确求助?哪些是违规求助? 3506016
关于积分的说明 11127457
捐赠科研通 3237969
什么是DOI,文献DOI怎么找? 1789411
邀请新用户注册赠送积分活动 871741
科研通“疑难数据库(出版商)”最低求助积分说明 803019