Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning

蠕动 材料科学 高温合金 微观结构 合金 机器学习 计算机科学 冶金
作者
Yue Liu,Junming Wu,Zhichao Wang,Xiao‐Gang Lu,Maxim Avdeev,Siqi Shi,Chong‐Yu Wang,Tao Yu
出处
期刊:Acta Materialia [Elsevier]
卷期号:195: 454-467 被引量:169
标识
DOI:10.1016/j.actamat.2020.05.001
摘要

Creep rupture life is a key material parameter for service life and mechanical properties of Ni-based single crystal superalloy materials. Therefore, it is of much practical significance to accurately and efficiently predict creep life. Here, we develop a divide-and-conquer self-adaptive (DCSA) learning method incorporating multiple material descriptors for rational and accelerated prediction of the creep rupture life. We characterize a high-quality creep dataset of 266 alloy samples with such features as alloy composition, test temperature, test stress, and heat treatment process. In addition, five microstructural parameters related to creep process, including stacking fault energy, lattice parameter, mole fraction of the γ' phase, diffusion coefficient and shear modulus, are calculated and introduced by the CALPHAD (CALculation of PHAse Diagrams) method and basic materials structure-property relationships, that enables us to reveal the effect of microstructure on creep properties. The machine learning explorations conducted on the creep dataset demonstrate the potential of the approach to achieve higher prediction accuracy with RMSE, MAPE and R2 of 0.3839, 0.0003 and 0.9176 than five alternative state-of-the-art machine learning models. On the newly collected 8 alloy samples, the error between the predicted creep life value and the experimental measured value is within the acceptable range (6.4486 h–40.7159 h), further confirming the validity of our DCSA model. Essentially, our method can establish accurate structure-property relationship mapping for the creep rupture life in a faster and cheaper manner than experiments and is expected to serve for inverse design of alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助招财不肥采纳,获得10
1秒前
sweetbearm应助李秋静采纳,获得10
1秒前
Michael_li完成签到,获得积分10
1秒前
whs完成签到,获得积分10
3秒前
科研通AI5应助xlj采纳,获得10
4秒前
再干一杯发布了新的文献求助10
4秒前
5秒前
满意的天完成签到 ,获得积分10
5秒前
luoshiwen完成签到,获得积分10
5秒前
落寞的觅柔完成签到,获得积分10
7秒前
8秒前
LUNWENREQUEST发布了新的文献求助10
8秒前
9秒前
10秒前
123cxj完成签到,获得积分10
13秒前
CO2发布了新的文献求助10
13秒前
summer发布了新的文献求助10
13秒前
14秒前
Xx.发布了新的文献求助10
14秒前
大大关注了科研通微信公众号
14秒前
稚祎完成签到 ,获得积分10
14秒前
14秒前
CodeCraft应助东东采纳,获得10
15秒前
16秒前
叽里咕噜完成签到 ,获得积分10
17秒前
田様应助zccc采纳,获得10
18秒前
隐形的雁完成签到,获得积分10
18秒前
追寻的秋玲完成签到,获得积分10
19秒前
李繁蕊发布了新的文献求助10
19秒前
20秒前
舒心的紫雪完成签到 ,获得积分10
21秒前
21秒前
23秒前
23秒前
24秒前
不上课不行完成签到,获得积分10
25秒前
再干一杯完成签到,获得积分10
25秒前
26秒前
汉堡包应助rudjs采纳,获得10
27秒前
27秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808