Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning

蠕动 材料科学 高温合金 微观结构 合金 机器学习 计算机科学 冶金
作者
Yue Liu,Junming Wu,Zhichao Wang,Xiao‐Gang Lu,Maxim Avdeev,Siqi Shi,Chong‐Yu Wang,Tao Yu
出处
期刊:Acta Materialia [Elsevier BV]
卷期号:195: 454-467 被引量:205
标识
DOI:10.1016/j.actamat.2020.05.001
摘要

Creep rupture life is a key material parameter for service life and mechanical properties of Ni-based single crystal superalloy materials. Therefore, it is of much practical significance to accurately and efficiently predict creep life. Here, we develop a divide-and-conquer self-adaptive (DCSA) learning method incorporating multiple material descriptors for rational and accelerated prediction of the creep rupture life. We characterize a high-quality creep dataset of 266 alloy samples with such features as alloy composition, test temperature, test stress, and heat treatment process. In addition, five microstructural parameters related to creep process, including stacking fault energy, lattice parameter, mole fraction of the γ' phase, diffusion coefficient and shear modulus, are calculated and introduced by the CALPHAD (CALculation of PHAse Diagrams) method and basic materials structure-property relationships, that enables us to reveal the effect of microstructure on creep properties. The machine learning explorations conducted on the creep dataset demonstrate the potential of the approach to achieve higher prediction accuracy with RMSE, MAPE and R2 of 0.3839, 0.0003 and 0.9176 than five alternative state-of-the-art machine learning models. On the newly collected 8 alloy samples, the error between the predicted creep life value and the experimental measured value is within the acceptable range (6.4486 h–40.7159 h), further confirming the validity of our DCSA model. Essentially, our method can establish accurate structure-property relationship mapping for the creep rupture life in a faster and cheaper manner than experiments and is expected to serve for inverse design of alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助sunny850采纳,获得10
刚刚
dummy完成签到,获得积分10
1秒前
2秒前
aaaaaa发布了新的文献求助10
2秒前
zzzzzz发布了新的文献求助10
2秒前
赘婿应助周婷采纳,获得10
2秒前
2秒前
qq完成签到,获得积分10
3秒前
3秒前
研友_Z3NGvn发布了新的文献求助10
4秒前
5秒前
徐涛完成签到,获得积分10
6秒前
领导范儿应助你好采纳,获得10
6秒前
唐新新完成签到,获得积分20
8秒前
热心晓丝发布了新的文献求助10
9秒前
10秒前
汉堡包应助zzzzzz采纳,获得10
10秒前
11秒前
11秒前
唐新新发布了新的文献求助10
11秒前
sunny850完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
Antheali应助科研通管家采纳,获得10
14秒前
唐泽雪穗应助科研通管家采纳,获得10
14秒前
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
今后应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
16秒前
sunny850发布了新的文献求助10
16秒前
17秒前
17秒前
坚定芷烟完成签到,获得积分10
18秒前
飞飞猪完成签到,获得积分20
19秒前
kkz完成签到,获得积分10
19秒前
19秒前
拉圈最菜妮厨完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4991289
求助须知:如何正确求助?哪些是违规求助? 4239820
关于积分的说明 13208366
捐赠科研通 4034700
什么是DOI,文献DOI怎么找? 2207462
邀请新用户注册赠送积分活动 1218448
关于科研通互助平台的介绍 1136900