Predicting creep rupture life of Ni-based single crystal superalloys using divide-and-conquer approach based machine learning

蠕动 材料科学 高温合金 微观结构 合金 机器学习 计算机科学 冶金
作者
Yue Liu,Junming Wu,Zhichao Wang,Xiao‐Gang Lu,Maxim Avdeev,Siqi Shi,Chong‐Yu Wang,Tao Yu
出处
期刊:Acta Materialia [Elsevier]
卷期号:195: 454-467 被引量:205
标识
DOI:10.1016/j.actamat.2020.05.001
摘要

Creep rupture life is a key material parameter for service life and mechanical properties of Ni-based single crystal superalloy materials. Therefore, it is of much practical significance to accurately and efficiently predict creep life. Here, we develop a divide-and-conquer self-adaptive (DCSA) learning method incorporating multiple material descriptors for rational and accelerated prediction of the creep rupture life. We characterize a high-quality creep dataset of 266 alloy samples with such features as alloy composition, test temperature, test stress, and heat treatment process. In addition, five microstructural parameters related to creep process, including stacking fault energy, lattice parameter, mole fraction of the γ' phase, diffusion coefficient and shear modulus, are calculated and introduced by the CALPHAD (CALculation of PHAse Diagrams) method and basic materials structure-property relationships, that enables us to reveal the effect of microstructure on creep properties. The machine learning explorations conducted on the creep dataset demonstrate the potential of the approach to achieve higher prediction accuracy with RMSE, MAPE and R2 of 0.3839, 0.0003 and 0.9176 than five alternative state-of-the-art machine learning models. On the newly collected 8 alloy samples, the error between the predicted creep life value and the experimental measured value is within the acceptable range (6.4486 h–40.7159 h), further confirming the validity of our DCSA model. Essentially, our method can establish accurate structure-property relationship mapping for the creep rupture life in a faster and cheaper manner than experiments and is expected to serve for inverse design of alloys.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
默默的裘发布了新的文献求助10
刚刚
刚刚
刚刚
1秒前
1秒前
1秒前
科目三应助赖胖胖采纳,获得30
1秒前
Anderson732发布了新的文献求助10
1秒前
1秒前
bluck2020完成签到,获得积分10
2秒前
luojy完成签到 ,获得积分10
2秒前
ZLY发布了新的文献求助10
2秒前
2秒前
2秒前
彭佳乐发布了新的文献求助10
3秒前
xh发布了新的文献求助10
3秒前
xh发布了新的文献求助10
3秒前
orixero应助张zhang采纳,获得10
3秒前
xh发布了新的文献求助10
3秒前
良蒙完成签到,获得积分10
3秒前
3秒前
豆沙包子完成签到,获得积分10
3秒前
3秒前
xh发布了新的文献求助10
3秒前
3秒前
xh发布了新的文献求助10
4秒前
xh发布了新的文献求助10
4秒前
xh发布了新的文献求助10
4秒前
xh发布了新的文献求助10
4秒前
shuan发布了新的文献求助10
4秒前
骑着火车撵火箭完成签到,获得积分10
5秒前
6秒前
6秒前
万能图书馆应助努努力采纳,获得10
7秒前
7秒前
xh发布了新的文献求助10
7秒前
7秒前
xh发布了新的文献求助10
7秒前
xh发布了新的文献求助10
7秒前
xh发布了新的文献求助10
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760032
求助须知:如何正确求助?哪些是违规求助? 5522946
关于积分的说明 15395925
捐赠科研通 4896929
什么是DOI,文献DOI怎么找? 2633965
邀请新用户注册赠送积分活动 1582032
关于科研通互助平台的介绍 1537478