Three-dimensional optoacoustic imaging of nailfold capillaries in systemic sclerosis and its potential for disease differentiation using deep learning

多发性硬化 医学 病理 免疫学
作者
Suhanyaa Nitkunanantharajah,Katja Haedicke,Tonia B. Moore,Joanne Manning,Graham Dinsdale,Michael Berks,Chris Taylor,Mark Dickinson,Dominik Jüstel,Vasilis Ntziachristos,Ariane L. Herrick,Andrea Murray
出处
期刊:Scientific Reports [Springer Nature]
卷期号:10 (1) 被引量:29
标识
DOI:10.1038/s41598-020-73319-2
摘要

The autoimmune disease systemic sclerosis (SSc) causes microvascular changes that can be easily observed cutaneously at the finger nailfold. Optoacoustic imaging (OAI), a combination of optical and ultrasound imaging, specifically raster-scanning optoacoustic mesoscopy (RSOM), offers a non-invasive high-resolution 3D visualization of capillaries allowing for a better view of microvascular changes and an extraction of volumetric measures. In this study, nailfold capillaries of patients with SSc and healthy controls are imaged and compared with each other for the first time using OAI. The nailfolds of 23 patients with SSc and 19 controls were imaged using RSOM. The acquired images were qualitatively compared to images from state-of-the-art imaging tools for SSc, dermoscopy and high magnification capillaroscopy. The vascular volume in the nailfold capillaries were computed from the RSOM images. The vascular volumes differ significantly between both cohorts (0.216 ± 0.085 mm3 and 0.337 ± 0.110 mm3; p < 0.0005). In addition, an artificial neural network was trained to automatically differentiate nailfold images from both cohorts to further assess whether OAI is sensitive enough to visualize anatomical differences in the capillaries between the two cohorts. Using transfer learning, the model classifies images with an area under the ROC curve of 0.897, and a sensitivity of 0.783 and specificity of 0.895. In conclusion, this study demonstrates the capabilities of RSOM as an imaging tool for SSc and establishes it as a modality that facilitates more in-depth studies into the disease mechanisms and progression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
好久不见发布了新的文献求助10
刚刚
小二郎应助轩辕德地采纳,获得10
刚刚
超级的飞飞完成签到,获得积分10
3秒前
4秒前
4秒前
金容完成签到,获得积分10
5秒前
细雨听风完成签到,获得积分10
5秒前
含糊的白安完成签到,获得积分10
6秒前
迟大猫应助xzn1123采纳,获得30
7秒前
7秒前
7秒前
科研通AI5应助李李采纳,获得50
8秒前
祖f完成签到,获得积分10
8秒前
阿莫西林胶囊完成签到,获得积分10
9秒前
jason完成签到,获得积分10
9秒前
9秒前
科研通AI5应助吴岳采纳,获得10
10秒前
Sheila发布了新的文献求助10
10秒前
甜美的海瑶完成签到,获得积分10
11秒前
11秒前
11秒前
张牧之完成签到 ,获得积分10
11秒前
yuyukeke完成签到,获得积分10
12秒前
12秒前
沉默的婴完成签到 ,获得积分10
12秒前
13秒前
14秒前
Dita完成签到,获得积分10
14秒前
惠惠发布了新的文献求助10
14秒前
脑洞疼应助lan采纳,获得10
15秒前
16秒前
成就的笑南完成签到 ,获得积分10
17秒前
偷狗的小月亮完成签到,获得积分10
17秒前
爱吃泡芙完成签到,获得积分10
17秒前
ysl完成签到,获得积分10
18秒前
18秒前
爆米花应助pipge采纳,获得30
18秒前
彻底完成签到,获得积分10
19秒前
20秒前
韋晴完成签到,获得积分10
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808