魔角纺纱
磁滞
阴极
材料科学
光谱学
电压
纺纱
原子物理学
离子
魔法角
分析化学(期刊)
化学物理
核磁共振波谱
化学
凝聚态物理
电气工程
物理
物理化学
复合材料
立体化学
工程类
色谱法
有机化学
量子力学
作者
Robert A. House,Gregory J. Rees,Miguel A. Pérez‐Osorio,John‐Joseph Marie,Édouard Boivin,Alex W. Robertson,Abhishek Nag,Mirian García‐Fernández,Ke‐Jin Zhou,Peter G. Bruce
出处
期刊:Nature Energy
[Springer Nature]
日期:2020-09-21
卷期号:5 (10): 777-785
被引量:366
标识
DOI:10.1038/s41560-020-00697-2
摘要
Li-rich cathode materials are potential candidates for next-generation Li-ion batteries. However, they exhibit a large voltage hysteresis on the first charge/discharge cycle, which involves a substantial (up to 1 V) loss of voltage and therefore energy density. For Na cathodes, for example Na0.75[Li0.25Mn0.75]O2, voltage hysteresis can be explained by the formation of molecular O2 trapped in voids within the particles. Here we show that this is also the case for Li1.2Ni0.13Co0.13Mn0.54O2. Resonant inelastic X-ray scattering and 17O magic angle spinning NMR spectroscopy show that molecular O2, rather than O22−, forms within the particles on the oxidation of O2− at 4.6 V versus Li+/Li on charge. These O2 molecules are reduced back to O2− on discharge, but at the lower voltage of 3.75 V, which explains the voltage hysteresis in Li-rich cathodes. 17O magic angle spinning NMR spectroscopy indicates a quantity of bulk O2 consistent with the O-redox charge capacity minus the small quantity of O2 loss from the surface. The implication is that O2, trapped in the bulk and lost from the surface, can explain O-redox. Understanding the severe voltage hysteresis in the first cycle of Li-rich cathodes is essential to realize their full potential in batteries. P. G. Bruce and colleagues report the formation of molecular O2 on charging rather than other oxidized O species is the cause for the voltage hysteresis.
科研通智能强力驱动
Strongly Powered by AbleSci AI