Nomograms Predict Overall Survival and Cancer-Specific Survival in Patients with Fibrosarcoma: A SEER-Based Study

列线图 医学 单变量 多元分析 流行病学 比例危险模型 肿瘤科 纤维肉瘤 内科学 单变量分析 阶段(地层学) 多元统计 监测、流行病学和最终结果 预后变量 癌症登记处 病理 统计 数学 古生物学 生物
作者
Guangheng Xiang,Juanjuan Zhu,Chenrong Ke,Yimin Weng,Mingqiao Fang,Sipin Zhu,Yuan Li,Jian Xiao,Lei Xu
出处
期刊:Journal of Oncology [Hindawi Publishing Corporation]
卷期号:2020: 1-9 被引量:10
标识
DOI:10.1155/2020/8284931
摘要

Due to the rarity, it is difficult to predict the survival of patients with fibrosarcoma. This study aimed to apply a nomogram to predict survival outcomes in patients with fibrosarcoma.A total of 2235 patients with diagnoses of fibrosarcoma were registered in the Surveillance, Epidemiology, and End Results database, of whom 663 patients were eventually enrolled. Univariate and multivariate Cox analyses were used to identify independent prognostic factors. Nomograms were constructed to predict 3-year and 5-year overall survival and cancer-specific survival of patients with fibrosarcoma.In univariate and multivariate analyses of OS, age, sex, race, tumor stage, pathologic grade, use of surgery, and tumor size were identified as independent prognostic factors. Age, sex, tumor stage, pathologic grade, use of surgery, and tumor size were significantly associated with CSS. These characteristics were further included to establish the nomogram for predicting 3-year and 5-year OS and CSS. For the internal validation of the nomogram predictions of OS and CSS, the C-indices were 0.784 and 0.801.We developed the nomograms that estimated 3-year and 5-year OS and CSS. These nomograms not only have good discrimination performance and calibration but also provide patients with better clinical benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
SYLH应助糯米糍采纳,获得10
2秒前
Owen应助糯米糍采纳,获得10
2秒前
乐乐应助糯米糍采纳,获得10
2秒前
丘比特应助糯米糍采纳,获得10
2秒前
Jasper应助糯米糍采纳,获得10
2秒前
斯文败类应助糯米糍采纳,获得10
2秒前
情怀应助糯米糍采纳,获得10
2秒前
小二郎应助糯米糍采纳,获得10
2秒前
慕青应助糯米糍采纳,获得10
2秒前
赘婿应助糯米糍采纳,获得10
2秒前
Bosen完成签到,获得积分10
2秒前
nebula应助任大师兄采纳,获得10
2秒前
zzzwederfrft完成签到,获得积分10
2秒前
3秒前
999999完成签到,获得积分20
4秒前
xiaoyang完成签到,获得积分10
4秒前
grc完成签到,获得积分10
5秒前
大鹏发布了新的文献求助10
5秒前
5秒前
zzzwederfrft发布了新的文献求助10
6秒前
没有答案发布了新的文献求助10
6秒前
张叶卓发布了新的文献求助10
7秒前
8秒前
赘婿应助兴奋千兰采纳,获得10
8秒前
优雅的半梅完成签到 ,获得积分10
8秒前
11秒前
11秒前
12秒前
丰富的不惜完成签到,获得积分10
13秒前
香蕉觅云应助没有答案采纳,获得10
13秒前
13秒前
14秒前
Hello应助江亭送行客采纳,获得10
15秒前
生物狗发布了新的文献求助10
16秒前
刘明生发布了新的文献求助10
16秒前
小M完成签到,获得积分10
17秒前
18秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737471
求助须知:如何正确求助?哪些是违规求助? 3281236
关于积分的说明 10023845
捐赠科研通 2997978
什么是DOI,文献DOI怎么找? 1644888
邀请新用户注册赠送积分活动 782418
科研通“疑难数据库(出版商)”最低求助积分说明 749782