Nomograms Predict Overall Survival and Cancer-Specific Survival in Patients with Fibrosarcoma: A SEER-Based Study

列线图 医学 单变量 多元分析 流行病学 比例危险模型 肿瘤科 纤维肉瘤 内科学 单变量分析 阶段(地层学) 多元统计 监测、流行病学和最终结果 预后变量 癌症登记处 病理 统计 数学 古生物学 生物
作者
Guangheng Xiang,Juanjuan Zhu,Chenrong Ke,Yimin Weng,Mingqiao Fang,Sipin Zhu,Yuan Li,Jian Xiao,Lei Xu
出处
期刊:Journal of Oncology [Hindawi Limited]
卷期号:2020: 1-9 被引量:10
标识
DOI:10.1155/2020/8284931
摘要

Due to the rarity, it is difficult to predict the survival of patients with fibrosarcoma. This study aimed to apply a nomogram to predict survival outcomes in patients with fibrosarcoma.A total of 2235 patients with diagnoses of fibrosarcoma were registered in the Surveillance, Epidemiology, and End Results database, of whom 663 patients were eventually enrolled. Univariate and multivariate Cox analyses were used to identify independent prognostic factors. Nomograms were constructed to predict 3-year and 5-year overall survival and cancer-specific survival of patients with fibrosarcoma.In univariate and multivariate analyses of OS, age, sex, race, tumor stage, pathologic grade, use of surgery, and tumor size were identified as independent prognostic factors. Age, sex, tumor stage, pathologic grade, use of surgery, and tumor size were significantly associated with CSS. These characteristics were further included to establish the nomogram for predicting 3-year and 5-year OS and CSS. For the internal validation of the nomogram predictions of OS and CSS, the C-indices were 0.784 and 0.801.We developed the nomograms that estimated 3-year and 5-year OS and CSS. These nomograms not only have good discrimination performance and calibration but also provide patients with better clinical benefits.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
科研通AI5应助lllyang采纳,获得10
刚刚
早日毕业发布了新的文献求助10
刚刚
戴先森完成签到,获得积分10
1秒前
椰子关注了科研通微信公众号
1秒前
思源应助yi只熊采纳,获得10
1秒前
貔貅发布了新的文献求助10
1秒前
1秒前
流星雨发布了新的文献求助30
1秒前
BruceKKKK完成签到,获得积分10
1秒前
儒雅慕灵发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
doc发布了新的文献求助10
3秒前
MENG完成签到,获得积分10
3秒前
wwwwM完成签到,获得积分10
3秒前
Akim应助香氛采纳,获得10
3秒前
suibian完成签到,获得积分10
4秒前
独特日记本完成签到,获得积分10
5秒前
xueshu小裁缝完成签到,获得积分20
5秒前
冷静的小松鼠完成签到,获得积分10
5秒前
diqiu完成签到 ,获得积分10
6秒前
kingwill应助SB采纳,获得20
6秒前
咚咚拐001应助不懂采纳,获得10
7秒前
zgx完成签到,获得积分10
7秒前
曾不错发布了新的文献求助20
7秒前
务实映之发布了新的文献求助10
8秒前
8秒前
9秒前
10秒前
10秒前
10秒前
无花果应助高贵的海安采纳,获得10
10秒前
ww完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
12秒前
高分求助中
Genetics: From Genes to Genomes 3000
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3474364
求助须知:如何正确求助?哪些是违规求助? 3066657
关于积分的说明 9100024
捐赠科研通 2757911
什么是DOI,文献DOI怎么找? 1513227
邀请新用户注册赠送积分活动 699469
科研通“疑难数据库(出版商)”最低求助积分说明 698986