Development and Validation of Single Field Multi-Ion Particle Therapy Treatments

质子疗法 医学物理学 领域(数学) 粒子(生态学)
作者
Benedikt Kopp,S. Mein,Ivana Dokic,Semi Harrabi,T. T. Bohlen,Thomas Haberer,Jürgen Debus,Amir Abdollahi,Andrea Mairani
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier]
卷期号:106 (1): 194-205 被引量:35
标识
DOI:10.1016/j.ijrobp.2019.10.008
摘要

PurposeTo develop and validate combined ion-beam with constant relative biological effectiveness (RBE) (CICR) particle therapy in single field arrangements for improved treatment efficacy, robustness, and normal tissue sparing.Methods and MaterialsThe PRECISE (PaRticle thErapy using single and Combined Ion optimization StratEgies) treatment planning system was developed to investigate clinical viability of CICR treatments. Single-field uniform dose (SFUD) with a single ion (proton [p], helium [He], or carbon [C]) and CICR (C-p and C-He) treatments were generated for 3 patient cases with a clinically prescribed dose of 3 Gy (RBE) per fraction. Spread-out Bragg peak plans were irradiated in homogenous and clinical-like settings using an anthropomorphic head phantom. A dosimetric and biological verification of CICRC-p treatments using a murine glioma cell line (GL261) was performed.ResultsCICR treatment plans for the 3 patients presented highly uniform physical dose while reducing high dose-averaged linear energy transfer gradients compared with carbon ions alone. When considering uncertainty in tissue parameter (α/β)x assignment and RBE modeling, the CICRC-p treatment exhibited enhanced biophysical stability within the target volume, similar to protons alone. CICR treatments reduced dose to normal tissue surrounding the target, exhibiting similar or improved dosimetric features compared with SFUDHe. For both CICRC-p and SFUD treatments, measurements verified the planned dose in the target within ∼3%. Planned versus measured target RBE values were 1.38 ± 0.02 and 1.39 ± 0.07 (<1% deviation), respectively, for the CICRC-p treatment in heterogenous settings.ConclusionsHere, we demonstrate that by combining 2 (or more) ions in a single field arrangement, more robust biological and more conformal dose distributions can be delivered compared with conventional particle therapy treatment planning. This work constitutes the first dosimetric and biological verification of multi-ion particle therapy in homogeneous as well as heterogenous settings. To develop and validate combined ion-beam with constant relative biological effectiveness (RBE) (CICR) particle therapy in single field arrangements for improved treatment efficacy, robustness, and normal tissue sparing. The PRECISE (PaRticle thErapy using single and Combined Ion optimization StratEgies) treatment planning system was developed to investigate clinical viability of CICR treatments. Single-field uniform dose (SFUD) with a single ion (proton [p], helium [He], or carbon [C]) and CICR (C-p and C-He) treatments were generated for 3 patient cases with a clinically prescribed dose of 3 Gy (RBE) per fraction. Spread-out Bragg peak plans were irradiated in homogenous and clinical-like settings using an anthropomorphic head phantom. A dosimetric and biological verification of CICRC-p treatments using a murine glioma cell line (GL261) was performed. CICR treatment plans for the 3 patients presented highly uniform physical dose while reducing high dose-averaged linear energy transfer gradients compared with carbon ions alone. When considering uncertainty in tissue parameter (α/β)x assignment and RBE modeling, the CICRC-p treatment exhibited enhanced biophysical stability within the target volume, similar to protons alone. CICR treatments reduced dose to normal tissue surrounding the target, exhibiting similar or improved dosimetric features compared with SFUDHe. For both CICRC-p and SFUD treatments, measurements verified the planned dose in the target within ∼3%. Planned versus measured target RBE values were 1.38 ± 0.02 and 1.39 ± 0.07 (<1% deviation), respectively, for the CICRC-p treatment in heterogenous settings. Here, we demonstrate that by combining 2 (or more) ions in a single field arrangement, more robust biological and more conformal dose distributions can be delivered compared with conventional particle therapy treatment planning. This work constitutes the first dosimetric and biological verification of multi-ion particle therapy in homogeneous as well as heterogenous settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MADKAI发布了新的文献求助10
1秒前
lulu完成签到,获得积分10
1秒前
沉静青寒完成签到,获得积分10
1秒前
REN关闭了REN文献求助
2秒前
好运锦鲤完成签到 ,获得积分10
2秒前
美有姬完成签到,获得积分10
3秒前
万能图书馆应助何博士采纳,获得10
3秒前
科研通AI2S应助蘑菇采纳,获得10
3秒前
一平发布了新的文献求助10
4秒前
王一博完成签到,获得积分10
4秒前
5秒前
nihil完成签到,获得积分10
5秒前
活力的泥猴桃完成签到 ,获得积分10
6秒前
6秒前
7秒前
obito完成签到,获得积分10
7秒前
娜行发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
Ck完成签到,获得积分10
9秒前
烦烦完成签到 ,获得积分10
10秒前
百宝发布了新的文献求助10
11秒前
jiangnan发布了新的文献求助10
11秒前
Sev完成签到,获得积分10
11秒前
11秒前
可耐的乘风完成签到,获得积分10
11秒前
FIN应助obito采纳,获得30
12秒前
啾啾发布了新的文献求助10
12秒前
爱学习的向日葵完成签到,获得积分10
13秒前
13秒前
华仔应助泛泛之交采纳,获得10
14秒前
雪123发布了新的文献求助10
14秒前
14秒前
15秒前
charon发布了新的文献求助10
15秒前
凶狠的食铁兽完成签到,获得积分10
15秒前
星辰大海应助花花啊采纳,获得10
15秒前
华仔应助liuyingke采纳,获得10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672