Deep Convolutional Neural Network Framework for Subpixel Mapping

亚像素渲染 计算机科学 人工智能 核(代数) 卷积神经网络 像素 高光谱成像 模式识别(心理学) 图像分辨率 计算机视觉 遥感 数学 地理 组合数学
作者
Da He,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9518-9539 被引量:57
标识
DOI:10.1109/tgrs.2020.3032475
摘要

Subpixel mapping (SPM) is an effective way to solve the mixed pixel problem, which is a ubiquitous phenomenon in remotely sensed imagery, by characterizing subpixel distribution within the mixed pixels. In fact, the majority of the classical and state-of-the-art SPM algorithms can be viewed as a convolution process, but these methods rely heavily on fixed and handcrafted kernels that are insufficient in characterizing a geographically realistic distribution image. In addition, the traditional SPM approach is based on the prerequisite of abundance images derived from spectral unmixing (SU), during which process uncertainty inherently exists and is propagated to the SPM. In this article, a kernel-learnable convolutional neural network (CNN) framework for subpixel mapping (SPMCNN-F) is proposed. In SPMCNN-F, the kernel is learnable during the training stage based on the given training sample pairs of low- and high-resolution patches for learning a geographically realistic prior, instead of fixed priors. The end-to-end mapping structure enables direct subpixel information extraction from the original coarse image, avoiding the uncertainty propagation from the SU. In the experiments undertaken in this study, two state-of-the-art super-resolution networks were selected as application demonstrations of the proposed SPMCNN-F method. In experiment part, three hyperspectral image data sets were adopted, two in a synthetic coarse image approach and one in a real coarse image approach, for the validation. Additionally, a new data set with pairs of Moderate-resolution Imaging Spectroradiometer (MODIS) and Landsat images were adopted in a real coarse image approach, for further validation of SPMCNN-F in large-scale area. The restored fine distribution images obtained in all the experiments showed a perceptually better reconstruction quality, both qualitatively and quantitatively, confirming the superiority of the proposed SPM framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
无幻完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
2秒前
lanxinge完成签到 ,获得积分10
2秒前
ssk完成签到,获得积分10
3秒前
4秒前
Yina完成签到 ,获得积分10
4秒前
5秒前
无情丹秋发布了新的文献求助10
10秒前
12秒前
量子星尘发布了新的文献求助10
15秒前
Colo发布了新的文献求助10
17秒前
简爱完成签到 ,获得积分10
18秒前
19秒前
量子星尘发布了新的文献求助10
21秒前
小莫完成签到 ,获得积分10
25秒前
推土机爱学习完成签到 ,获得积分10
27秒前
拉长的诗蕊完成签到,获得积分10
28秒前
千玺的小粉丝儿完成签到,获得积分10
31秒前
从容的水壶完成签到 ,获得积分10
31秒前
量子星尘发布了新的文献求助10
34秒前
达尔文1完成签到 ,获得积分10
39秒前
量子星尘发布了新的文献求助10
43秒前
alice01987完成签到,获得积分10
44秒前
Jinyang完成签到 ,获得积分10
46秒前
达尔文完成签到 ,获得积分10
49秒前
51秒前
量子星尘发布了新的文献求助10
56秒前
久旱逢甘霖完成签到 ,获得积分10
57秒前
谢陈完成签到 ,获得积分10
57秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
NEPUJuly发布了新的文献求助10
1分钟前
jun完成签到 ,获得积分10
1分钟前
小不完成签到 ,获得积分10
1分钟前
oleskarabach发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
充电宝应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671500
求助须知:如何正确求助?哪些是违规求助? 4918822
关于积分的说明 15134852
捐赠科研通 4830227
什么是DOI,文献DOI怎么找? 2586973
邀请新用户注册赠送积分活动 1540582
关于科研通互助平台的介绍 1498856