Deep Convolutional Neural Network Framework for Subpixel Mapping

亚像素渲染 计算机科学 人工智能 核(代数) 卷积神经网络 像素 高光谱成像 模式识别(心理学) 图像分辨率 计算机视觉 遥感 数学 地理 组合数学
作者
Da He,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9518-9539 被引量:48
标识
DOI:10.1109/tgrs.2020.3032475
摘要

Subpixel mapping (SPM) is an effective way to solve the mixed pixel problem, which is a ubiquitous phenomenon in remotely sensed imagery, by characterizing subpixel distribution within the mixed pixels. In fact, the majority of the classical and state-of-the-art SPM algorithms can be viewed as a convolution process, but these methods rely heavily on fixed and handcrafted kernels that are insufficient in characterizing a geographically realistic distribution image. In addition, the traditional SPM approach is based on the prerequisite of abundance images derived from spectral unmixing (SU), during which process uncertainty inherently exists and is propagated to the SPM. In this article, a kernel-learnable convolutional neural network (CNN) framework for subpixel mapping (SPMCNN-F) is proposed. In SPMCNN-F, the kernel is learnable during the training stage based on the given training sample pairs of low- and high-resolution patches for learning a geographically realistic prior, instead of fixed priors. The end-to-end mapping structure enables direct subpixel information extraction from the original coarse image, avoiding the uncertainty propagation from the SU. In the experiments undertaken in this study, two state-of-the-art super-resolution networks were selected as application demonstrations of the proposed SPMCNN-F method. In experiment part, three hyperspectral image data sets were adopted, two in a synthetic coarse image approach and one in a real coarse image approach, for the validation. Additionally, a new data set with pairs of Moderate-resolution Imaging Spectroradiometer (MODIS) and Landsat images were adopted in a real coarse image approach, for further validation of SPMCNN-F in large-scale area. The restored fine distribution images obtained in all the experiments showed a perceptually better reconstruction quality, both qualitatively and quantitatively, confirming the superiority of the proposed SPM framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鱿鱼完成签到,获得积分10
1秒前
1秒前
KingWong发布了新的文献求助10
1秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
2秒前
卢卢完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
3秒前
weiteman完成签到,获得积分10
3秒前
宸5931发布了新的文献求助10
3秒前
5秒前
5秒前
还能不能学会了完成签到,获得积分10
6秒前
浪而而完成签到,获得积分10
6秒前
SHUANG发布了新的文献求助10
6秒前
淡然的含卉应助一期一会采纳,获得10
6秒前
7秒前
飞翔的荷兰人完成签到,获得积分10
7秒前
7秒前
Ail完成签到,获得积分10
7秒前
卢卢发布了新的文献求助10
8秒前
顾矜应助wergou采纳,获得10
8秒前
8秒前
123456发布了新的文献求助10
8秒前
谢谢李发布了新的文献求助10
9秒前
9秒前
9秒前
咩咩应助vocrious采纳,获得10
10秒前
10秒前
10秒前
11秒前
煦暖应助科研通管家采纳,获得10
11秒前
11秒前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603996
求助须知:如何正确求助?哪些是违规求助? 4012488
关于积分的说明 12423933
捐赠科研通 3693069
什么是DOI,文献DOI怎么找? 2036050
邀请新用户注册赠送积分活动 1069178
科研通“疑难数据库(出版商)”最低求助积分说明 953646