Deep Convolutional Neural Network Framework for Subpixel Mapping

亚像素渲染 计算机科学 人工智能 核(代数) 卷积神经网络 像素 高光谱成像 模式识别(心理学) 图像分辨率 计算机视觉 遥感 数学 地理 组合数学
作者
Da He,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9518-9539 被引量:48
标识
DOI:10.1109/tgrs.2020.3032475
摘要

Subpixel mapping (SPM) is an effective way to solve the mixed pixel problem, which is a ubiquitous phenomenon in remotely sensed imagery, by characterizing subpixel distribution within the mixed pixels. In fact, the majority of the classical and state-of-the-art SPM algorithms can be viewed as a convolution process, but these methods rely heavily on fixed and handcrafted kernels that are insufficient in characterizing a geographically realistic distribution image. In addition, the traditional SPM approach is based on the prerequisite of abundance images derived from spectral unmixing (SU), during which process uncertainty inherently exists and is propagated to the SPM. In this article, a kernel-learnable convolutional neural network (CNN) framework for subpixel mapping (SPMCNN-F) is proposed. In SPMCNN-F, the kernel is learnable during the training stage based on the given training sample pairs of low- and high-resolution patches for learning a geographically realistic prior, instead of fixed priors. The end-to-end mapping structure enables direct subpixel information extraction from the original coarse image, avoiding the uncertainty propagation from the SU. In the experiments undertaken in this study, two state-of-the-art super-resolution networks were selected as application demonstrations of the proposed SPMCNN-F method. In experiment part, three hyperspectral image data sets were adopted, two in a synthetic coarse image approach and one in a real coarse image approach, for the validation. Additionally, a new data set with pairs of Moderate-resolution Imaging Spectroradiometer (MODIS) and Landsat images were adopted in a real coarse image approach, for further validation of SPMCNN-F in large-scale area. The restored fine distribution images obtained in all the experiments showed a perceptually better reconstruction quality, both qualitatively and quantitatively, confirming the superiority of the proposed SPM framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助欣喜的念芹采纳,获得10
1秒前
1秒前
2秒前
酷炫迎波完成签到,获得积分10
2秒前
3秒前
yly123完成签到,获得积分10
3秒前
WHH完成签到,获得积分10
3秒前
4秒前
6秒前
幻烨烨完成签到,获得积分10
6秒前
光亮的莺发布了新的文献求助10
7秒前
大脑袋应助zzf采纳,获得30
8秒前
8秒前
9秒前
zhang发布了新的文献求助10
9秒前
9秒前
欣喜的念芹完成签到,获得积分20
10秒前
玉婷完成签到,获得积分10
12秒前
神勇友灵完成签到,获得积分10
12秒前
CHyaa完成签到,获得积分10
12秒前
英姑应助摆烂研究牲采纳,获得10
12秒前
12秒前
12秒前
14秒前
jiao发布了新的文献求助10
15秒前
大气从安完成签到,获得积分10
15秒前
研友_VZG7GZ应助gengsumin采纳,获得10
16秒前
16秒前
孤独的狼发布了新的文献求助10
16秒前
xixi发布了新的文献求助30
16秒前
yly123发布了新的文献求助10
17秒前
17秒前
丸子_2025000完成签到,获得积分10
17秒前
Driscoll完成签到 ,获得积分10
18秒前
高高的蓝天完成签到 ,获得积分10
18秒前
Owen应助欣喜的念芹采纳,获得10
20秒前
baolequ发布了新的文献求助10
20秒前
鹿c3完成签到,获得积分10
21秒前
这瓜不卖完成签到,获得积分10
21秒前
孤独的狼完成签到,获得积分10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966029
求助须知:如何正确求助?哪些是违规求助? 3511354
关于积分的说明 11157644
捐赠科研通 3245890
什么是DOI,文献DOI怎么找? 1793218
邀请新用户注册赠送积分活动 874262
科研通“疑难数据库(出版商)”最低求助积分说明 804296