Deep Convolutional Neural Network Framework for Subpixel Mapping

亚像素渲染 计算机科学 人工智能 核(代数) 卷积神经网络 像素 高光谱成像 模式识别(心理学) 图像分辨率 计算机视觉 遥感 数学 地理 组合数学
作者
Da He,Yanfei Zhong,Xinyu Wang,Liangpei Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:59 (11): 9518-9539 被引量:48
标识
DOI:10.1109/tgrs.2020.3032475
摘要

Subpixel mapping (SPM) is an effective way to solve the mixed pixel problem, which is a ubiquitous phenomenon in remotely sensed imagery, by characterizing subpixel distribution within the mixed pixels. In fact, the majority of the classical and state-of-the-art SPM algorithms can be viewed as a convolution process, but these methods rely heavily on fixed and handcrafted kernels that are insufficient in characterizing a geographically realistic distribution image. In addition, the traditional SPM approach is based on the prerequisite of abundance images derived from spectral unmixing (SU), during which process uncertainty inherently exists and is propagated to the SPM. In this article, a kernel-learnable convolutional neural network (CNN) framework for subpixel mapping (SPMCNN-F) is proposed. In SPMCNN-F, the kernel is learnable during the training stage based on the given training sample pairs of low- and high-resolution patches for learning a geographically realistic prior, instead of fixed priors. The end-to-end mapping structure enables direct subpixel information extraction from the original coarse image, avoiding the uncertainty propagation from the SU. In the experiments undertaken in this study, two state-of-the-art super-resolution networks were selected as application demonstrations of the proposed SPMCNN-F method. In experiment part, three hyperspectral image data sets were adopted, two in a synthetic coarse image approach and one in a real coarse image approach, for the validation. Additionally, a new data set with pairs of Moderate-resolution Imaging Spectroradiometer (MODIS) and Landsat images were adopted in a real coarse image approach, for further validation of SPMCNN-F in large-scale area. The restored fine distribution images obtained in all the experiments showed a perceptually better reconstruction quality, both qualitatively and quantitatively, confirming the superiority of the proposed SPM framework.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2jz完成签到,获得积分10
2秒前
4秒前
4秒前
llewis完成签到,获得积分10
4秒前
diu应助十八采纳,获得10
4秒前
在水一方应助Tylose采纳,获得10
6秒前
科研通AI2S应助Shiku采纳,获得10
7秒前
8秒前
在水一方应助团子采纳,获得10
9秒前
10秒前
一一发布了新的文献求助10
11秒前
传统的斓完成签到,获得积分10
11秒前
Xxxx发布了新的文献求助10
11秒前
alexstu发布了新的文献求助10
15秒前
科研通AI2S应助皮皮鲁采纳,获得10
16秒前
FashionBoy应助汉唐精彩采纳,获得10
17秒前
科目三应助xiaojingling采纳,获得10
20秒前
俭朴映阳完成签到 ,获得积分10
20秒前
22秒前
22秒前
24秒前
Lala完成签到 ,获得积分10
24秒前
吃了嘛您发布了新的文献求助10
26秒前
Xxxx完成签到,获得积分20
26秒前
方方方方方完成签到,获得积分10
27秒前
皮皮鲁发布了新的文献求助10
27秒前
Steven发布了新的文献求助10
30秒前
30秒前
alexstu完成签到,获得积分10
31秒前
32秒前
小熊跳舞完成签到,获得积分10
32秒前
丰知然应助科研通管家采纳,获得10
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
丰知然应助科研通管家采纳,获得10
32秒前
丰知然应助科研通管家采纳,获得10
32秒前
丰知然应助科研通管家采纳,获得10
32秒前
丰知然应助科研通管家采纳,获得10
32秒前
32秒前
搜集达人应助科研通管家采纳,获得10
32秒前
丰知然应助科研通管家采纳,获得10
33秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 量子力学 冶金 电极
热门帖子
关注 科研通微信公众号,转发送积分 3316734
求助须知:如何正确求助?哪些是违规求助? 2948521
关于积分的说明 8540998
捐赠科研通 2624376
什么是DOI,文献DOI怎么找? 1436156
科研通“疑难数据库(出版商)”最低求助积分说明 665796
邀请新用户注册赠送积分活动 651738