Atomic-Scale Rational Designs of Superionic Sulfide-Based Solid-State Electrolytes By Atomic Layer Deposition

快离子导体 电解质 原子层沉积 材料科学 锂(药物) 离子电导率 纳米技术 电极 化学工程 化学 薄膜 物理化学 医学 工程类 内分泌学
作者
Xiangbo Meng,Jeffrey W. Elam
出处
期刊:Meeting abstracts 卷期号:MA2019-01 (2): 155-155 被引量:5
标识
DOI:10.1149/ma2019-01/2/155
摘要

Liquid electrolytes currently are widely utilized in lithium batteries, serving as a lithium-ion conductor but an electrical insulator. However, their flammable nature poses serious safety concerns and their reactivity to electrodes underlies performance-fading of lithium batteries. In this context, solid-state electrolytes are highly regarded as a safe and reliable alternative and undergoing intensive investigation. Traditional processes (e.g., solid-state reaction, mechanochemical method, and melt-quenching method) have enabled various superionic solid-state electrolytes, but there have been challenges to achieve intimate assembling contacts between solid-state electrolytes and electrodes. To this end, an in-situ method will be the most desirable for growing solid-state electrolytes directly on electrodes with minimal interfacial resistance. In this regard, atomic layer deposition (ALD) recently has raised an increasing interest for solid-state electrolytes, featuring its defect-free uniformity, unrivaled conformal deposition, low temperature, and rational tunability. To date, ALD has mainly reported for synthesizing oxide-based solid-state electrolytes, realizing an ionic conductivity of 2.2 x 10 -6 S/cm [1] at best. Recently we conducted the first study on sulfide-based solid-state electrolytes using ALD and brought a big breakthrough for achieving superionic solid-state electrolytes. Through rationally combining two ALD processes for binary Li-S and Al-S compounds [2, 3], in the study we synthesized a series of ternary compounds of Li x Al y S. Our impedance measurements revealed that the resultants Li x Al y S films are promising solid-state electrolytes with tunable ionic conductivities up to over 10 -3 S/cm, at least three orders of magnitude higher than those of previous oxide-based counterparts by ALD. In the study, we also characterized the composition of the resultant Li x Al y S films using quartz crystal microbalance (QCM), inductively coupled plasma (ICP) mass spectrometry , and X-ray photoelectron spectroscopy (XPS). In addition, we investigated the growth of the Li x Al y S films using in-situ Fourier transform infrared spectroscopy (FTIR) and QCM. Very interestingly, we demonstrated that the resultant Li x Al y S films have exceptional properties in inhibiting the growth of lithium dendrite structures in lithium batteries. Thus, this study is significant for developing all-solid-state batteries via the in-situ ALD growth of superionic solid-state electrolytes. Kazyak, E., et al., Atomic layer deposition and first principles modeling of glassy Li 3 BO 3 –Li 2 CO 3 electrolytes for solid-state Li metal batteries. Journal of Materials Chemistry A, 2018. 6 (40): p. 19425-19437. Meng, X., et al., Vapor-phase atomic-controllable growth of amorphous Li 2 S for high-performance lithium–sulfur batteries. ACS Nano, 2014. 8 (10): p. 10963-10972. Meng, X., et al., Atomic layer deposition of aluminum sulfide: growth mechanism and electrochemical evaluation in lithium-ion batteries. Chemistry of Materials, 2017. 29 (21): p. 9043-9052.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
百事从欢完成签到 ,获得积分10
刚刚
1秒前
yuyu完成签到,获得积分10
1秒前
桐伶发布了新的文献求助10
2秒前
zch19970203完成签到,获得积分10
2秒前
wanci应助棋子采纳,获得10
3秒前
哇哦完成签到,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
希望天下0贩的0应助zh1858f采纳,获得10
4秒前
4秒前
行者无疆发布了新的文献求助10
5秒前
小匹夫发布了新的文献求助10
5秒前
5秒前
搞怪的萃发布了新的文献求助10
6秒前
7秒前
7秒前
8秒前
8秒前
9秒前
科研通AI6应助妙妙0采纳,获得10
9秒前
奇异果果完成签到 ,获得积分10
9秒前
阿屁屁猪完成签到,获得积分10
9秒前
思源应助陈思采纳,获得10
10秒前
10秒前
大模型应助桐伶采纳,获得10
10秒前
Arthur完成签到 ,获得积分10
10秒前
淡淡的小老鼠完成签到,获得积分10
11秒前
11秒前
科研通AI6应助tyr001采纳,获得10
11秒前
甜甜跳跳糖完成签到 ,获得积分20
12秒前
科研通AI2S应助新月采纳,获得30
12秒前
流窜意识完成签到,获得积分10
12秒前
danporzhu发布了新的文献求助10
12秒前
刘洋发布了新的文献求助10
12秒前
伶俐猪完成签到 ,获得积分10
13秒前
某某某完成签到,获得积分10
13秒前
14秒前
14秒前
谭绮晴完成签到,获得积分10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Chemistry and Biochemistry: Research Progress Vol. 7 430
Biotechnology Engineering 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5629991
求助须知:如何正确求助?哪些是违规求助? 4721324
关于积分的说明 14972153
捐赠科研通 4788008
什么是DOI,文献DOI怎么找? 2556688
邀请新用户注册赠送积分活动 1517740
关于科研通互助平台的介绍 1478342