Multi-Contrast Super-Resolution MRI Through a Progressive Network

人工智能 对比度(视觉) 特征(语言学) 计算机科学 图像分辨率 图像质量 像素 模式识别(心理学) 计算机视觉 磁共振成像 采样(信号处理) 分辨率(逻辑) 医学影像学 图像(数学) 放射科 医学 哲学 滤波器(信号处理) 语言学
作者
Qing Lyu,Hongming Shan,C. Steber,Corbin A. Helis,Chris Whitlow,Michael D. Chan,Ge Wang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:39 (9): 2738-2749 被引量:136
标识
DOI:10.1109/tmi.2020.2974858
摘要

Magnetic resonance imaging (MRI) is widely used for screening, diagnosis, image-guided therapy, and scientific research. A significant advantage of MRI over other imaging modalities such as computed tomography (CT) and nuclear imaging is that it clearly shows soft tissues in multi-contrasts. Compared with other medical image super-resolution methods that are in a single contrast, multi-contrast super-resolution studies can synergize multiple contrast images to achieve better super-resolution results. In this paper, we propose a one-level non-progressive neural network for low up-sampling multi-contrast super-resolution and a two-level progressive network for high up-sampling multi-contrast super-resolution. The proposed networks integrate multi-contrast information in a high-level feature space and optimize the imaging performance by minimizing a composite loss function, which includes mean-squared-error, adversarial loss, perceptual loss, and textural loss. Our experimental results demonstrate that 1) the proposed networks can produce MRI super-resolution images with good image quality and outperform other multi-contrast super-resolution methods in terms of structural similarity and peak signal-to-noise ratio; 2) combining multi-contrast information in a high-level feature space leads to a significantly improved result than a combination in the low-level pixel space; and 3) the progressive network produces a better super-resolution image quality than the non-progressive network, even if the original low-resolution images were highly down-sampled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑笑完成签到,获得积分10
刚刚
1秒前
默默的芙完成签到,获得积分10
1秒前
xm发布了新的文献求助10
1秒前
1秒前
2秒前
陈佳琪完成签到,获得积分10
2秒前
LU完成签到,获得积分10
2秒前
2秒前
2秒前
lwei发布了新的文献求助10
2秒前
设计狂魔应助九川采纳,获得30
2秒前
LiShin发布了新的文献求助10
3秒前
song完成签到,获得积分10
4秒前
Phoebe1996发布了新的文献求助10
4秒前
yannis2020发布了新的文献求助10
4秒前
小猴发布了新的文献求助10
5秒前
酷酷的老太完成签到 ,获得积分20
5秒前
5秒前
锣大炮完成签到,获得积分10
6秒前
maqin完成签到,获得积分10
6秒前
小王完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
科研通AI2S应助lwei采纳,获得10
6秒前
幽默的念双完成签到,获得积分10
6秒前
正直冰露发布了新的文献求助10
7秒前
标致小伙发布了新的文献求助10
7秒前
7秒前
pinkdon完成签到,获得积分10
7秒前
5477完成签到,获得积分10
7秒前
8秒前
lins完成签到,获得积分20
8秒前
Orange应助cindy采纳,获得10
9秒前
9秒前
phz完成签到,获得积分10
9秒前
10秒前
所所应助积极的凌波采纳,获得10
10秒前
SV关注了科研通微信公众号
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762