操作员(生物学)
梯子操作员
位移算符
哈密顿量(控制论)
波函数
时间演化
因式分解
指数函数
波包
量子力学
数学
数学物理
物理
计算机科学
数学分析
紧算子
算法
数学优化
扩展(谓词逻辑)
生物化学
化学
抑制因子
转录因子
基因
程序设计语言
作者
P. C. Garcia Quijas,L. M. Arévalo Aguilar
出处
期刊:Physica Scripta
[IOP Publishing]
日期:2007-01-12
卷期号:75 (2): 185-194
被引量:17
标识
DOI:10.1088/0031-8949/75/2/012
摘要
There is a widespread belief in the quantum physical community, and textbooks used to teach quantum mechanics, that it is a difficult task to apply the time evolution operator on an initial wavefunction. Because the Hamiltonian operator is, generally, the sum of two operators, then it is not possible to apply the time evolution operator on an initial wavefunction ψ(x, 0), for it implies using terms like . A possible solution is to factorize the time evolution operator and then apply successively the individual exponential operator on the initial wavefunction. However, the exponential operator does not directly factorize, i.e. . In this study we present a useful procedure for factorizing the time evolution operator when the argument of the exponential is a sum of two operators, which obey specific commutation relations. Then, we apply the exponential operator as an evolution operator for the case of elementary unidimensional potentials, like a particle subject to a constant force and a harmonic oscillator. Also, we discuss an apparent paradox concerning the time evolution operator and non-spreading wave packets addressed previously in the literature.
科研通智能强力驱动
Strongly Powered by AbleSci AI