ESPRESSO: Entropy and ShaPe awaRe timE-Series SegmentatiOn for Processing Heterogeneous Sensor Data

计算机科学 人工智能 时间序列 聚类分析 模式识别(心理学) 熵(时间箭头) 变更检测 系列(地层学) 数据挖掘
作者
Shohreh Deldari,Daniel Smith,Amin Sadri,Flora D. Salim
出处
期刊:Proceedings of the ACM on interactive, mobile, wearable and ubiquitous technologies [Association for Computing Machinery]
卷期号:4 (3): 1-24 被引量:8
标识
DOI:10.1145/3411832
摘要

Extracting informative and meaningful temporal segments from high-dimensional wearable sensor data, smart devices, or IoT data is a vital preprocessing step in applications such as Human Activity Recognition (HAR), trajectory prediction, gesture recognition, and lifelogging. In this paper, we propose ESPRESSO (Entropy and ShaPe awaRe timE-Series SegmentatiOn), a hybrid segmentation model for multi-dimensional time-series that is formulated to exploit the entropy and temporal shape properties of time-series. ESPRESSO differs from existing methods that focus upon particular statistical or temporal properties of time-series exclusively. As part of model development, a novel temporal representation of time-series WCAC was introduced along with a greedy search approach that estimate segments based upon the entropy metric. ESPRESSO was shown to offer superior performance to four state-of-the-art methods across seven public datasets of wearable and wear-free sensing. In addition, we undertake a deeper investigation of these datasets to understand how ESPRESSO and its constituent methods perform with respect to different dataset characteristics. Finally, we provide two interesting case-studies to show how applying ESPRESSO can assist in inferring daily activity routines and the emotional state of humans.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
露亮完成签到,获得积分10
刚刚
小思怡完成签到,获得积分10
1秒前
斯文败类应助周少采纳,获得10
1秒前
啊TiP完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
朴实思春发布了新的文献求助10
1秒前
2秒前
852应助积极的远山采纳,获得10
2秒前
some完成签到,获得积分10
2秒前
业余研究生完成签到,获得积分20
2秒前
2秒前
宾克斯完成签到,获得积分10
2秒前
3秒前
3秒前
C胖胖完成签到,获得积分10
3秒前
陌上完成签到 ,获得积分10
4秒前
稳重傲柔完成签到,获得积分10
4秒前
A1234567完成签到,获得积分10
5秒前
wdb发布了新的文献求助10
5秒前
maomao驳回了馒头应助
5秒前
高大一一完成签到,获得积分10
5秒前
anpucle发布了新的文献求助10
6秒前
Rosechanel发布了新的文献求助10
6秒前
7秒前
坚持坚持完成签到 ,获得积分10
7秒前
Owen应助Vizz采纳,获得10
7秒前
11发布了新的文献求助10
8秒前
XX关注了科研通微信公众号
8秒前
超级的诗兰完成签到,获得积分10
8秒前
10秒前
10秒前
哇哈哈完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
在水一方应助zilhua采纳,获得10
11秒前
11发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3958799
求助须知:如何正确求助?哪些是违规求助? 3504983
关于积分的说明 11121652
捐赠科研通 3236440
什么是DOI,文献DOI怎么找? 1788768
邀请新用户注册赠送积分活动 871373
科研通“疑难数据库(出版商)”最低求助积分说明 802723