Signal based condition monitoring techniques for fault detection and diagnosis of induction motors: A state-of-the-art review

断层(地质) 故障检测与隔离 信号(编程语言) 信号处理 状态监测 感应电动机 领域(数学) 控制工程 工程类 计算机科学 自动化 可靠性工程 电子工程 人工智能 数字信号处理 电气工程 执行机构 电压 程序设计语言 机械工程 数学 地震学 纯数学 地质学
作者
Purushottam Gangsar,Rajiv Tiwari
出处
期刊:Mechanical Systems and Signal Processing [Elsevier]
卷期号:144: 106908-106908 被引量:358
标识
DOI:10.1016/j.ymssp.2020.106908
摘要

Uninterrupted and trouble-free operation of induction motors (IMs) is the compulsion of the modern industries. Firstly, the paper reviews the conventional time and spectrum signal analyses of two most effective type of signals, i.e. the vibration and the current for various IM faults. The vibration and the current signal analyses (time and spectral) is performed using the signals measured from different faulty IMs from a laboratory setup. Subsequently, the advantages and difficulties associated with these conventional procedures are discussed. Next, this paper presents and summarizes the existing research and development in the field of signal based automation of condition monitoring methodologies for the fault detection and diagnosis of various electrical and mechanical faults of IMs. Nowadays, artificial intelligent (AI) methods are being employed for the IM and other machine fault diagnosis. Advancements of the AI based fault diagnosis including the popular approaches are reviewed in details. These techniques are being integrated with traditional monitoring techniques. The AI based fault monitoring and detection techniques for IMs published up to 2000 are briefly described, however, more attention is paid to the techniques that are introduced in roughly past two decades, i.e. during 2000–2019. In overall, this paper includes review of system signals, conventional and advance signal processing techniques; however, it mainly covers, the selection of effective statistical features, AI methods, and associated training and testing strategies for fault diagnostics of IMs. Finally, dedicated discussions on the recent developments, research gaps and future scopes in the fault monitoring and diagnosis of IMs are added.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
理想三旬完成签到 ,获得积分10
刚刚
IP190237完成签到,获得积分10
4秒前
传奇3应助聪明亦玉采纳,获得10
4秒前
6秒前
慕青应助会撒娇的小猫咪采纳,获得10
11秒前
12秒前
fenfen完成签到,获得积分10
16秒前
ChouNen完成签到,获得积分10
17秒前
kong完成签到 ,获得积分20
18秒前
18秒前
liner完成签到 ,获得积分10
18秒前
19秒前
wan完成签到,获得积分10
19秒前
一一应助lyric采纳,获得20
20秒前
22秒前
老衲完成签到,获得积分20
23秒前
23秒前
小马甲应助科研通管家采纳,获得30
24秒前
Doctor Tang完成签到,获得积分10
24秒前
24秒前
小二郎应助科研通管家采纳,获得10
24秒前
ppg123应助科研通管家采纳,获得10
24秒前
嗯哼应助科研通管家采纳,获得20
24秒前
ppg123应助科研通管家采纳,获得10
24秒前
子车茗应助科研通管家采纳,获得10
25秒前
SciGPT应助科研通管家采纳,获得10
25秒前
毛豆应助科研通管家采纳,获得10
25秒前
Gilana应助科研通管家采纳,获得10
25秒前
Owen应助科研通管家采纳,获得10
25秒前
帅帅哈发布了新的文献求助10
25秒前
jasmine完成签到,获得积分10
28秒前
28秒前
Jan.发布了新的文献求助10
28秒前
qianzheng应助Wd采纳,获得10
30秒前
fenfen发布了新的文献求助10
31秒前
一一应助干净利落采纳,获得30
33秒前
酷波er应助yiyi采纳,获得10
33秒前
qks完成签到 ,获得积分10
33秒前
井野浮完成签到,获得积分10
35秒前
子车半烟完成签到,获得积分10
36秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211785
求助须知:如何正确求助?哪些是违规求助? 2860670
关于积分的说明 8125232
捐赠科研通 2526488
什么是DOI,文献DOI怎么找? 1360369
科研通“疑难数据库(出版商)”最低求助积分说明 643200
邀请新用户注册赠送积分活动 615288