Evaluation of carbonation progress using AIJ model, FEM analysis, and machine learning algorithms

碳化作用 耐久性 人工神经网络 机器学习 相对湿度 材料科学 有限元法 人工智能 计算机科学 结构工程 复合材料 工程类 气象学 物理
作者
Hyung-Min Lee,Han‐Seung Lee,Prannoy Suraneni
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:259: 119703-119703 被引量:26
标识
DOI:10.1016/j.conbuildmat.2020.119703
摘要

Increasing costs due to failure and reconstruction highlight the importance of concrete durability research. Carbonation of concrete, which can accelerate corrosion, is one of the major deterioration mechanisms in reinforced concrete structures. Experimental data has been used to develop carbonation prediction models, however, the service life predicted from various models can differ significantly. A potential solution is the application of an artificial neural network algorithm, which simulates the human nervous system, to evaluate concrete carbonation. In this study, the possibility of applying machine learning to predict concrete carbonation behavior is evaluated. A deep learning model, which has the best learning power among various machine learning models, was applied. This model is structured such that hidden layers of hierarchical artificial neural networks are formed in several layers. Existing carbonation experimental data (water-to-cement ratio 0.55 and 0.65, temperature 20 °C, relative humidity 60%, and CO2 concentrations 5% and 20%) was predicted by using the deep learning model which was also compared with the results of two other models – AIJ model and FEM analysis. Under the test conditions, the differences in carbonation rate coefficient between experimental data and the deep learning results ranged from 0.01 mm/year to 0.10 mm/year for the different water-to-cement ratios and CO2 concentrations. These results were comparable though somewhat better than results from FEM analysis, which showed corresponding differences ranging from 0.08 mm/year to 1.04 mm/year. The results were significantly better than the AIJ model, which showed differences ranging from 0.32 mm/year to 2.34 mm/year. These preliminary results suggest that a deep learning algorithm can be used to accurately predict concrete carbonation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsv发布了新的文献求助10
刚刚
搞怪冷之关注了科研通微信公众号
2秒前
perfumei完成签到,获得积分10
2秒前
罗大大发布了新的文献求助10
2秒前
研友_VZG7GZ应助liuuuuu采纳,获得10
3秒前
3秒前
雨齐完成签到,获得积分10
3秒前
李明泰完成签到,获得积分10
5秒前
酷波er应助yangjun采纳,获得10
5秒前
5秒前
鸡蛋完成签到 ,获得积分10
6秒前
zhou123432完成签到,获得积分20
6秒前
杜萌萌完成签到,获得积分10
7秒前
李健应助十一嘞采纳,获得10
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
zcl应助科研通管家采纳,获得20
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
wanci应助科研通管家采纳,获得10
8秒前
充电宝应助科研通管家采纳,获得10
8秒前
李健应助科研通管家采纳,获得10
9秒前
传奇3应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
浮生若梦应助科研通管家采纳,获得10
9秒前
浮生若梦应助科研通管家采纳,获得10
9秒前
浮生若梦应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得30
9秒前
10秒前
善学以致用应助康康采纳,获得10
10秒前
王欣茹发布了新的文献求助10
10秒前
海绵宝宝发布了新的文献求助10
11秒前
12秒前
风中黎昕完成签到 ,获得积分10
13秒前
13秒前
13秒前
zhongying发布了新的文献求助10
14秒前
Dr_JennyZ完成签到,获得积分10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Constitutional and Administrative Law 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5262687
求助须知:如何正确求助?哪些是违规求助? 4423535
关于积分的说明 13770052
捐赠科研通 4298274
什么是DOI,文献DOI怎么找? 2358345
邀请新用户注册赠送积分活动 1354694
关于科研通互助平台的介绍 1315914