Evaluation of carbonation progress using AIJ model, FEM analysis, and machine learning algorithms

碳化作用 耐久性 人工神经网络 机器学习 相对湿度 材料科学 有限元法 人工智能 计算机科学 结构工程 复合材料 工程类 气象学 物理
作者
Hyung-Min Lee,Han‐Seung Lee,Prannoy Suraneni
出处
期刊:Construction and Building Materials [Elsevier BV]
卷期号:259: 119703-119703 被引量:26
标识
DOI:10.1016/j.conbuildmat.2020.119703
摘要

Increasing costs due to failure and reconstruction highlight the importance of concrete durability research. Carbonation of concrete, which can accelerate corrosion, is one of the major deterioration mechanisms in reinforced concrete structures. Experimental data has been used to develop carbonation prediction models, however, the service life predicted from various models can differ significantly. A potential solution is the application of an artificial neural network algorithm, which simulates the human nervous system, to evaluate concrete carbonation. In this study, the possibility of applying machine learning to predict concrete carbonation behavior is evaluated. A deep learning model, which has the best learning power among various machine learning models, was applied. This model is structured such that hidden layers of hierarchical artificial neural networks are formed in several layers. Existing carbonation experimental data (water-to-cement ratio 0.55 and 0.65, temperature 20 °C, relative humidity 60%, and CO2 concentrations 5% and 20%) was predicted by using the deep learning model which was also compared with the results of two other models – AIJ model and FEM analysis. Under the test conditions, the differences in carbonation rate coefficient between experimental data and the deep learning results ranged from 0.01 mm/year to 0.10 mm/year for the different water-to-cement ratios and CO2 concentrations. These results were comparable though somewhat better than results from FEM analysis, which showed corresponding differences ranging from 0.08 mm/year to 1.04 mm/year. The results were significantly better than the AIJ model, which showed differences ranging from 0.32 mm/year to 2.34 mm/year. These preliminary results suggest that a deep learning algorithm can be used to accurately predict concrete carbonation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
hping发布了新的文献求助10
5秒前
碧蓝宝川完成签到,获得积分10
5秒前
6秒前
7秒前
10秒前
lqy完成签到,获得积分10
10秒前
鱼鱼完成签到,获得积分20
11秒前
12秒前
ss发布了新的文献求助10
12秒前
lqy发布了新的文献求助10
12秒前
量子星尘发布了新的文献求助10
15秒前
QQ小楠完成签到 ,获得积分10
16秒前
17秒前
天天快乐应助陈霸下。采纳,获得10
18秒前
Sakura完成签到 ,获得积分10
20秒前
lalala发布了新的文献求助10
20秒前
我是老大应助蝌蚪采纳,获得10
20秒前
一只罐头瓶完成签到,获得积分10
21秒前
ss完成签到,获得积分10
22秒前
24秒前
26秒前
weske发布了新的文献求助10
29秒前
29秒前
30秒前
FiroZhang完成签到,获得积分10
30秒前
wanci应助hping采纳,获得10
31秒前
高兴凝安完成签到 ,获得积分10
31秒前
Friday发布了新的文献求助10
33秒前
mly完成签到,获得积分10
34秒前
Brot_12发布了新的文献求助30
34秒前
星辰大海应助123采纳,获得10
34秒前
科研通AI5应助q792309106采纳,获得10
35秒前
37秒前
37秒前
38秒前
小康完成签到,获得积分10
38秒前
41秒前
NexusExplorer应助XYCH采纳,获得10
42秒前
xxx发布了新的文献求助10
44秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163