Evaluation of carbonation progress using AIJ model, FEM analysis, and machine learning algorithms

碳化作用 耐久性 人工神经网络 机器学习 相对湿度 材料科学 有限元法 人工智能 计算机科学 结构工程 复合材料 工程类 气象学 物理
作者
Hyung-Min Lee,Han‐Seung Lee,Prannoy Suraneni
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:259: 119703-119703 被引量:26
标识
DOI:10.1016/j.conbuildmat.2020.119703
摘要

Increasing costs due to failure and reconstruction highlight the importance of concrete durability research. Carbonation of concrete, which can accelerate corrosion, is one of the major deterioration mechanisms in reinforced concrete structures. Experimental data has been used to develop carbonation prediction models, however, the service life predicted from various models can differ significantly. A potential solution is the application of an artificial neural network algorithm, which simulates the human nervous system, to evaluate concrete carbonation. In this study, the possibility of applying machine learning to predict concrete carbonation behavior is evaluated. A deep learning model, which has the best learning power among various machine learning models, was applied. This model is structured such that hidden layers of hierarchical artificial neural networks are formed in several layers. Existing carbonation experimental data (water-to-cement ratio 0.55 and 0.65, temperature 20 °C, relative humidity 60%, and CO2 concentrations 5% and 20%) was predicted by using the deep learning model which was also compared with the results of two other models – AIJ model and FEM analysis. Under the test conditions, the differences in carbonation rate coefficient between experimental data and the deep learning results ranged from 0.01 mm/year to 0.10 mm/year for the different water-to-cement ratios and CO2 concentrations. These results were comparable though somewhat better than results from FEM analysis, which showed corresponding differences ranging from 0.08 mm/year to 1.04 mm/year. The results were significantly better than the AIJ model, which showed differences ranging from 0.32 mm/year to 2.34 mm/year. These preliminary results suggest that a deep learning algorithm can be used to accurately predict concrete carbonation results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
王某人完成签到 ,获得积分10
刚刚
欢呼的明雪完成签到,获得积分10
1秒前
1秒前
嘉禾望岗发布了新的文献求助10
1秒前
大橙子完成签到,获得积分10
1秒前
东北信风完成签到 ,获得积分10
1秒前
今后应助祝顺遂采纳,获得10
1秒前
NADA完成签到,获得积分10
2秒前
长安完成签到,获得积分10
2秒前
AA完成签到,获得积分10
2秒前
NANA发布了新的文献求助10
2秒前
4秒前
4秒前
5秒前
7秒前
7秒前
8秒前
科研通AI5应助无悔呀采纳,获得10
8秒前
8秒前
littlewhite关注了科研通微信公众号
9秒前
9秒前
零点起步完成签到,获得积分10
9秒前
慕青应助大力的含卉采纳,获得10
9秒前
善良过客发布了新的文献求助10
10秒前
10秒前
10秒前
dildil发布了新的文献求助10
10秒前
10秒前
hu970发布了新的文献求助10
11秒前
11秒前
王思鲁发布了新的文献求助30
11秒前
七个小矮人完成签到,获得积分10
12秒前
Aria完成签到,获得积分10
12秒前
感性的安露应助结实雪卉采纳,获得20
13秒前
零点起步发布了新的文献求助10
14秒前
故意的傲玉应助Ll采纳,获得10
14秒前
斯文败类应助xiuxiu_27采纳,获得10
14秒前
胖子完成签到,获得积分10
14秒前
王巧巧完成签到,获得积分10
14秒前
tangsuyun发布了新的文献求助10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759