Evaluation of carbonation progress using AIJ model, FEM analysis, and machine learning algorithms

碳化作用 耐久性 人工神经网络 机器学习 相对湿度 材料科学 有限元法 人工智能 计算机科学 结构工程 复合材料 工程类 气象学 物理
作者
Hyung-Min Lee,Han‐Seung Lee,Prannoy Suraneni
出处
期刊:Construction and Building Materials [Elsevier]
卷期号:259: 119703-119703 被引量:26
标识
DOI:10.1016/j.conbuildmat.2020.119703
摘要

Increasing costs due to failure and reconstruction highlight the importance of concrete durability research. Carbonation of concrete, which can accelerate corrosion, is one of the major deterioration mechanisms in reinforced concrete structures. Experimental data has been used to develop carbonation prediction models, however, the service life predicted from various models can differ significantly. A potential solution is the application of an artificial neural network algorithm, which simulates the human nervous system, to evaluate concrete carbonation. In this study, the possibility of applying machine learning to predict concrete carbonation behavior is evaluated. A deep learning model, which has the best learning power among various machine learning models, was applied. This model is structured such that hidden layers of hierarchical artificial neural networks are formed in several layers. Existing carbonation experimental data (water-to-cement ratio 0.55 and 0.65, temperature 20 °C, relative humidity 60%, and CO2 concentrations 5% and 20%) was predicted by using the deep learning model which was also compared with the results of two other models – AIJ model and FEM analysis. Under the test conditions, the differences in carbonation rate coefficient between experimental data and the deep learning results ranged from 0.01 mm/year to 0.10 mm/year for the different water-to-cement ratios and CO2 concentrations. These results were comparable though somewhat better than results from FEM analysis, which showed corresponding differences ranging from 0.08 mm/year to 1.04 mm/year. The results were significantly better than the AIJ model, which showed differences ranging from 0.32 mm/year to 2.34 mm/year. These preliminary results suggest that a deep learning algorithm can be used to accurately predict concrete carbonation results.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
spc68应助早安采纳,获得10
1秒前
复成完成签到 ,获得积分10
3秒前
光亮妙之完成签到,获得积分10
3秒前
dd发布了新的文献求助30
3秒前
整齐半青完成签到 ,获得积分10
3秒前
你好完成签到,获得积分10
4秒前
chenanqi完成签到,获得积分10
4秒前
5秒前
yfn完成签到,获得积分10
9秒前
10秒前
14秒前
halo完成签到,获得积分10
15秒前
抑郁小鼠解剖家完成签到,获得积分10
15秒前
忧心的不言完成签到,获得积分10
17秒前
5_羟色胺完成签到,获得积分10
19秒前
12135发布了新的文献求助30
19秒前
wanci应助科研通管家采纳,获得10
22秒前
小蘑菇应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得80
22秒前
华仔应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得30
22秒前
爱喝酸奶完成签到 ,获得积分10
22秒前
njgi发布了新的文献求助10
23秒前
材小料完成签到,获得积分10
24秒前
FashionBoy应助重要谷雪采纳,获得10
25秒前
爱偷懒的猪完成签到,获得积分10
26秒前
怂宝儿完成签到,获得积分10
27秒前
28秒前
30秒前
水澈天澜发布了新的文献求助20
31秒前
dd发布了新的文献求助10
32秒前
32秒前
俊逸的棒棒糖完成签到 ,获得积分10
33秒前
34秒前
cyn完成签到,获得积分10
34秒前
积极的睫毛完成签到,获得积分10
34秒前
留胡子的秋灵完成签到,获得积分10
35秒前
皛鱼完成签到,获得积分10
36秒前
csx应助DCQ采纳,获得10
36秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
Essential Guides for Early Career Teachers: Mental Well-being and Self-care 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5563713
求助须知:如何正确求助?哪些是违规求助? 4648650
关于积分的说明 14685821
捐赠科研通 4590597
什么是DOI,文献DOI怎么找? 2518657
邀请新用户注册赠送积分活动 1491243
关于科研通互助平台的介绍 1462521