Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases

医学 肝病学 无线电技术 内科学 结直肠癌 放射科 肿瘤科 癌症
作者
Marjaneh Taghavi,Stefano Trebeschi,Rita Simões,David B. Meek,Roeland C.Y. Beckers,Doenja M. J. Lambregts,Cornelis Verhoef,Janneke B. Houwers,Uulke A. van der Heide,Geerard L. Beets,Monique Maas
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:46 (1): 249-256 被引量:56
标识
DOI:10.1007/s00261-020-02624-1
摘要

Early identification of patients at risk of developing colorectal liver metastases can help personalizing treatment and improve oncological outcome. The aim of this study was to investigate in patients with colorectal cancer (CRC) whether a machine learning-based radiomics model can predict the occurrence of metachronous metastases. In this multicentre study, the primary staging portal venous phase CT of 91 CRC patients were retrospectively analysed. Two groups were assessed: patients without liver metastases at primary staging, or during follow-up of ≥ 24 months (n = 67) and patients without liver metastases at primary staging but developed metachronous liver metastases < 24 months after primary staging (n = 24). After liver parenchyma segmentation, 1767 radiomics features were extracted for each patient. Three predictive models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features. Stability of features across hospitals was assessed by the Kruskal–Wallis test and inter-correlated features were removed if their correlation coefficient was higher than 0.9. Bayesian-optimized random forest with wrapper feature selection was used for prediction models. The three predictive models that included radiomics features, clinical features and a combination of radiomics with clinical features resulted in an AUC in the validation cohort of 86% (95%CI 85–87%), 71% (95%CI 69–72%) and 86% (95% CI 85–87%), respectively. A machine learning-based radiomics analysis of routine clinical CT imaging at primary staging can provide valuable biomarkers to identify patients at high risk for developing colorectal liver metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李友健完成签到 ,获得积分10
1秒前
可乐完成签到 ,获得积分10
2秒前
科研通AI2S应助端庄的白风采纳,获得10
3秒前
3秒前
拼搏菲鹰完成签到,获得积分10
3秒前
4秒前
李爱国应助霸气鹏飞采纳,获得10
4秒前
5秒前
汉堡包应助董璐采纳,获得10
5秒前
跟屁虫完成签到,获得积分10
6秒前
踏雪无痕发布了新的文献求助10
6秒前
充电宝应助dan采纳,获得10
7秒前
7秒前
雪山飞龙发布了新的文献求助10
8秒前
pzy发布了新的文献求助10
11秒前
11秒前
JWKim完成签到,获得积分10
12秒前
淡然向南完成签到,获得积分20
13秒前
橡皮泥大盗完成签到,获得积分10
13秒前
无妄海发布了新的文献求助10
14秒前
12发布了新的文献求助10
15秒前
zhangxiangwei发布了新的文献求助10
16秒前
小黑板完成签到,获得积分10
17秒前
18秒前
苏桑焉完成签到 ,获得积分10
18秒前
18秒前
19秒前
慕青应助不洒采纳,获得10
20秒前
tong发布了新的文献求助10
21秒前
早早发论文完成签到,获得积分10
21秒前
22秒前
22秒前
22秒前
Sk发布了新的文献求助10
23秒前
Shaw完成签到,获得积分10
24秒前
24秒前
陈医生发布了新的文献求助10
24秒前
nczpf2010发布了新的文献求助10
24秒前
酷波er应助复杂的如萱采纳,获得10
25秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137360
求助须知:如何正确求助?哪些是违规求助? 2788429
关于积分的说明 7786365
捐赠科研通 2444582
什么是DOI,文献DOI怎么找? 1300002
科研通“疑难数据库(出版商)”最低求助积分说明 625695
版权声明 601023