亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning-based analysis of CT radiomics model for prediction of colorectal metachronous liver metastases

医学 肝病学 无线电技术 内科学 结直肠癌 放射科 肿瘤科 癌症
作者
Marjaneh Taghavi,Stefano Trebeschi,Rita Simões,David B. Meek,Rianne C.J. Beckers,Doenja M. J. Lambregts,Cornelis Verhoef,Janneke B. Houwers,Uulke A. van der Heide,Geerard L. Beets,Monique Maas
出处
期刊:Abdominal Imaging [Springer Nature]
卷期号:46 (1): 249-256 被引量:66
标识
DOI:10.1007/s00261-020-02624-1
摘要

Early identification of patients at risk of developing colorectal liver metastases can help personalizing treatment and improve oncological outcome. The aim of this study was to investigate in patients with colorectal cancer (CRC) whether a machine learning-based radiomics model can predict the occurrence of metachronous metastases. In this multicentre study, the primary staging portal venous phase CT of 91 CRC patients were retrospectively analysed. Two groups were assessed: patients without liver metastases at primary staging, or during follow-up of ≥ 24 months (n = 67) and patients without liver metastases at primary staging but developed metachronous liver metastases < 24 months after primary staging (n = 24). After liver parenchyma segmentation, 1767 radiomics features were extracted for each patient. Three predictive models were constructed based on (1) radiomics features, (2) clinical features and (3) a combination of clinical and radiomics features. Stability of features across hospitals was assessed by the Kruskal–Wallis test and inter-correlated features were removed if their correlation coefficient was higher than 0.9. Bayesian-optimized random forest with wrapper feature selection was used for prediction models. The three predictive models that included radiomics features, clinical features and a combination of radiomics with clinical features resulted in an AUC in the validation cohort of 86% (95%CI 85–87%), 71% (95%CI 69–72%) and 86% (95% CI 85–87%), respectively. A machine learning-based radiomics analysis of routine clinical CT imaging at primary staging can provide valuable biomarkers to identify patients at high risk for developing colorectal liver metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
归陌发布了新的文献求助10
刚刚
神外王001完成签到 ,获得积分10
2秒前
科目三应助ywl采纳,获得10
4秒前
5秒前
20秒前
20秒前
ywl发布了新的文献求助10
23秒前
LIUDEHUA发布了新的文献求助10
24秒前
少7一点8完成签到,获得积分10
25秒前
36秒前
41秒前
44秒前
49秒前
50秒前
chichqq发布了新的文献求助10
54秒前
55秒前
赵世璧发布了新的文献求助10
59秒前
地瓜地瓜完成签到 ,获得积分10
1分钟前
Ava应助chichqq采纳,获得30
1分钟前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
汉堡包应助高挑的沛蓝采纳,获得10
1分钟前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
HuiHui完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
苏鱼完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
wsj完成签到,获得积分10
3分钟前
3分钟前
故意的勒发布了新的文献求助10
3分钟前
张晓祁完成签到,获得积分10
3分钟前
yueying完成签到,获得积分10
3分钟前
feihua1完成签到 ,获得积分10
3分钟前
3分钟前
吃了吃了完成签到,获得积分10
3分钟前
3分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957025
求助须知:如何正确求助?哪些是违规求助? 3503031
关于积分的说明 11111168
捐赠科研通 3234068
什么是DOI,文献DOI怎么找? 1787710
邀请新用户注册赠送积分活动 870728
科研通“疑难数据库(出版商)”最低求助积分说明 802250