Multimodal learning analytics for game‐based learning

学习分析 计算机科学 眼动 分析 模式 凝视 多模式学习 杠杆(统计) 人工智能 面部表情 人机交互 机器学习 数据科学 社会科学 社会学
作者
Andrew Emerson,Elizabeth B. Cloude,Roger Azevedo,James Lester
出处
期刊:British Journal of Educational Technology [Wiley]
卷期号:51 (5): 1505-1526 被引量:105
标识
DOI:10.1111/bjet.12992
摘要

Abstract A distinctive feature of game‐based learning environments is their capacity to create learning experiences that are both effective and engaging. Recent advances in sensor‐based technologies such as facial expression analysis and gaze tracking have introduced the opportunity to leverage multimodal data streams for learning analytics. Learning analytics informed by multimodal data captured during students’ interactions with game‐based learning environments hold significant promise for developing a deeper understanding of game‐based learning, designing game‐based learning environments to detect maladaptive behaviors and informing adaptive scaffolding to support individualized learning. This paper introduces a multimodal learning analytics approach that incorporates student gameplay, eye tracking and facial expression data to predict student posttest performance and interest after interacting with a game‐based learning environment, Crystal Island . We investigated the degree to which separate and combined modalities (ie, gameplay, facial expressions of emotions and eye gaze) captured from students ( n = 65) were predictive of student posttest performance and interest after interacting with Crystal Island . Results indicate that when predicting student posttest performance and interest, models utilizing multimodal data either perform equally well or outperform models utilizing unimodal data. We discuss the synergistic effects of combining modalities for predicting both student interest and posttest performance. The findings suggest that multimodal learning analytics can accurately predict students’ posttest performance and interest during game‐based learning and hold significant potential for guiding real‐time adaptive scaffolding.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助科研通管家采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得10
刚刚
Oreki发布了新的文献求助10
刚刚
刚刚
1秒前
小白白完成签到,获得积分10
1秒前
郭小胖14应助科研通管家采纳,获得10
1秒前
bkagyin应助天天天采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
科研通AI5应助nanonamo采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得30
1秒前
wanci应助科研通管家采纳,获得10
1秒前
研友_Zr2mxZ完成签到,获得积分10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
Jasper应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
深情安青应助啦啦啦采纳,获得10
2秒前
bkagyin应助科研通管家采纳,获得10
2秒前
桐桐应助科研通管家采纳,获得10
2秒前
NexusExplorer应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
2秒前
Q11完成签到,获得积分10
2秒前
传奇3应助科研通管家采纳,获得10
3秒前
1+1应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
天天快乐应助科研通管家采纳,获得10
3秒前
1+1应助科研通管家采纳,获得10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
卡皮巴拉发布了新的文献求助10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
烟花应助科研通管家采纳,获得10
4秒前
慕青应助科研通管家采纳,获得10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
老爱学习了应助该饮茶了采纳,获得20
4秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3730023
求助须知:如何正确求助?哪些是违规求助? 3274861
关于积分的说明 9989324
捐赠科研通 2990315
什么是DOI,文献DOI怎么找? 1641017
邀请新用户注册赠送积分活动 779534
科研通“疑难数据库(出版商)”最低求助积分说明 748237